Module 17 - Sequences, Permutations, and Combinations

DSC 40A, Summer 2023

Agenda

Sequences, permutations, and combinations.

Motivation

Many problems in probability involve counting.

Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?

Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?

- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
 - If drawing cards from a deck, the population is the deck of all cards.
 - If selecting people from DSC 40A, the population is everyone in DSC 40A.
- Two decisions:
 - Do we select elements with or without replacement?
 - Does the order in which things are selected matter?

Sequences

- A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
- Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.

Example: A UCSD PID starts with "A" then has 8 digits. How many UCSD PIDs are possible?

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that **repetition is allowed** and **order matters** is n^k .

(Note: We mentioned this fact in the lecture on clustering!)

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Example: Draw 4 cards (without replacement) from a standard 52-card deck.

Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$P(n,k) = (n)(n-1)...(n-k+1)$$

▶ To simplify: recall that the definition of *n*! is

$$n! = (n)(n - 1)...(2)(1)$$

Given this, we can write

$$P(n,k)=\frac{n!}{(n-k)!}$$

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top 3 choices?

- a) 21
- b) 210
- c) 343
- d) 2187
- e) None of the above.

Special case of permutations

Suppose we have n people. The total number of ways I can rearrange these n people in a line is

This is consistent with the formula

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = \frac{n!}{1} = n!$$

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.
- Example: There are 24 ice cream flavors. How many ways can you pick two flavors?

From permutations to combinations

- There is a close connection between:
 - the number of permutations of k elements selected from a group of n, and
 - the number of combinations of k elements selected from a group of n

Since # permutations = n!/(n-k)! and # orderings of k items = k!, we have

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Combinations

In general, the number of ways to select *k* elements from a group of *n* elements such that **repetition is not allowed** and **order does not matter** is

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The symbol $\binom{n}{k}$ is pronounced "*n* choose *k*", and is also known as the **binomial coefficient**.

Example: committees

How many ways are there to select a president, vice president, and secretary from a group of 8 people?

How many ways are there to select a committee of 3 people from a group of 8 people?

If you're ever confused about the difference between permutations and combinations, come back to this example.

Summary

Summary

- A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
 - Number of sequences: n^k .
- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.

Number of permutations: $P(n, k) = \frac{n!}{(n-k)!}$.

A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.

Number of combinations:
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$
.