Module 17 - Sequences, Permutations, and Combinations

DSC 40A, Summer 2023

Agenda

Sequences, permutations, and combinations.

Motivation

- Many problems in probability involve counting.
- Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?
- Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?
- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
- If drawing cards from a deck, the population is the deck of all cards.
- If selecting people from DSC 40A, the population is everyone in DSC 40A.
- Two decisions:

O Do we select elements with or without replacement?
Does the order in which things are selected matter?

Sequences

\Rightarrow A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.
SO SO SO SO
- Example: A UCSD PID starts with " A " then has 8 digits. How many UCSD PIDs are possible?

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that repetition is allowed and order matters is n^{k}.
(Note: We mentioned this fact in the lecture on clustering!)

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Example: Draw 4 cards (without replacement) from a standard 52-card deck.
- Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

- In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$
P(n, k)=(n)(n-1) \ldots(n-k+1)
$$

- To simplify: recall that the definition of n ! is

$$
n!=(n)(n-1) \ldots(2)(1)
$$

- Given this, we can write

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top 3 choices?
a) 21
b) 210
c) 343
d) 2187
e) None of the above.

$$
P(7,3)=\frac{n!}{(n-k)!}=\frac{7!}{4!}=\frac{7 \cdot 6 \cdot 5 \cdot x \cdot 3 \cdot x \cdot x}{x \cdot-3 \cdot x \cdot x}
$$

$$
=210
$$

Special case of permutations

- Suppose we have n people. The total number of ways I can rearrange these n people in a line is
- This is consistent with the formula

$$
P(n, n)=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}=n!
$$

Combinations
A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.

Example: There are 24 ice cream flavors. How many ways can you pick two flavors?

$$
\begin{aligned}
& \left.C(n, k)=\begin{array}{c}
\downarrow \\
n \\
k
\end{array}\right) \\
& =\frac{n!}{(n-k)!k!}
\end{aligned}
$$

From permutations to combinations

- There is a close connection between:
- the number of permutations of k elements selected from a group of n, and
$>$ the number of combinations of k elements selected from a group of n

$$
\text { \# combinations }=\frac{\# \text { permutations }}{\# \text { orderings of } k \text { items }}
$$

- Since \# permutations $=\frac{n!}{(n-k)!}$ and \# orderings of k items = k !, we have

$$
C(n, k)=\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Combinations

In general, the number of ways to select k elements from a group of n elements such that repetition is not allowed and order does not matter is

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

The symbol $\binom{n}{k}$ is pronounced " n choose k ", and is also known as the binomial coefficient.

Example: committees

How many ways are there to select a president, vice president, and secretary from a group of 8 people? odermittes

$$
P(8,3)=8 \cdot 7.6
$$

How many ways are there to select a committee of $3^{\text {n }}$ people from a group of 8 people? order not

$$
C(8,3)=\frac{8.7 .6}{3!}
$$

If you're ever confused about the difference between permutations and combinations, come back to this example.

Summary

Summary

\Rightarrow A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
\downarrow Number of sequences: n^{k}.

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.
- Number of combinations: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.

