Module 18 - Probabability and Combinatorics

 Examples

DSC 40A, Summer 2023

Agenda

- Review of combinatorics.

Lots of examples.

Review of combinatorics

Combinatorics as a tool for probability

- If S is a sample space consisting of equally-likely outcomes, and A is an event, then $P(\underline{A})=\frac{|A|}{|S|}$.
- In many examples, this will boil down to using permutations and/or combinations to count $|A|$ and $|S|$.
- Tip: Before starting a probability problem, always think about what the sample space S is!

Sequences

\Rightarrow A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Example: You roll a die 10 times. How many different sequences of results are possible?

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that repetition is allowed and order matters is

$$
n^{k}
$$

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters. "repitition is not allowed"
- Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

$$
\begin{aligned}
& 8 \cdot 7 \cdot 6 \\
& \frac{8!}{5!} \frac{8 \cdot 7 \cdot 6 \cdot 8 \cdot x \cdot x \cdot x \cdot x}{8 \cdot x \cdot x \cdot x \cdot x}
\end{aligned}
$$

Permutations

- In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$
\begin{aligned}
P(n, k) & =(n)(n-1) \ldots(n-k+1) \\
& =\frac{n!}{(n-k)!}
\end{aligned}
$$

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.
- Example: How many ways are there to select a committee of 3 people from a group of 8 people?

$$
\frac{8!}{5!3!}
$$

Combinations

In general, the number of ways to select k elements from a group of n elements such that repetition is not allowed and order does not matter is

$$
\begin{aligned}
C(n, k) & =\binom{n}{k} \\
& =\frac{P(n, k)}{k!} \\
& =\frac{n!}{(n-k)!k!}
\end{aligned}
$$

The symbol $\binom{n}{k}$ is pronounced " n choose k ", and is also known as the binomial coefficient.

Discussion Question

A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face. How many dominoes are in the set of dominoes?
a) $\binom{7}{2}$
(b) $\binom{7}{1}+\binom{7}{2} \in$ why?
c) $P(7,2)$
d) $\frac{P(7,2)}{P(7,1)} 7$!

Selecting students - overview

We're going answer the same question using several different techniques.

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 1: using permutations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?
$S=$ all possible ordered arrangements of stadeds
label students $A, B, C \ldots T$
ed) $6 A T B C$
\# permatioters including Avi
\# of permutations
denominutor $\frac{20!}{15!}$ via $P(2 a s)$
nurecator: hou many permatalios inclut A ?

$$
\begin{aligned}
& \text { if } A \text { is firt.... } \\
& \rightarrow \frac{A}{19} \overline{18} \overline{16} \rightarrow \frac{19 \cdot 18 \cdot 17 \cdot 16}{\text { counts poms ine } A \text { is } 1 s t} \\
& \text { if } A \text { is sead. } \\
& \Delta_{19} \frac{A}{15} \overline{5}_{16} \rightarrow \frac{19 \cdot 18 \cdot 17 \cdot 16)}{\text { Comst peans wher As } 2 \mathrm{~d}}
\end{aligned}
$$

Land so on to A being S^{t}
thrs.. $S \cdot\left(9 \cdot 18 \cdot 17-16=5 \cdot P(19,4)=S \cdot \frac{19!}{15!}\right.$

$$
\begin{aligned}
\frac{\text { num }}{\text { denom }}=\frac{S \cdot \frac{19!}{15!}}{\frac{20!}{15!}} & =S \cdot \frac{19!}{18!} \cdot \frac{15!}{20!} \\
& =S \cdot \frac{1}{20} \\
& =\frac{1}{4}
\end{aligned}
$$

Selecting students (Method 2: using permutations and the complement)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Sexclude Av: from sample n
$P(19,5)$

$$
\frac{P(20,5)-P(19,5)}{P(20,5)}
$$

Selecting students (Method 3: using combinations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?
$S=$ all sets of S selected students

$$
\begin{aligned}
& \text { remaining } \\
& \text { slots } \\
& 4 \text { ore }
\end{aligned}
$$

$$
\text { \# of sets }<\binom{20}{5}=\frac{20!}{15!5!}
$$

Selecting students (Method 3: using combinations)

Question 1, Part 1 (Denominator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals could you draw?

$$
C(20,5)=\binom{20}{s}=\frac{20!}{15!5!}
$$

Selecting students (Method 3: using combinations)

Question 1, Part 2 (Numerator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals include Avi?

$$
C(19,4)=\binom{19}{4}=\frac{19!}{15!4!}
$$

Selecting students (Method 3: using combinations)

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Selecting students (Method 4: "the easy way")

Question 1: There are 20 students in a class. Avi is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Avi is among the 5 selected students?

Summary

- A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
- Number of sequences: n^{k}.
- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.
- Number of combinations: $\binom{n}{k}=\frac{n!}{(n-k) \cdot k!}$.

