Module 19 - More Probabability and

Combinatorics Examples

DSC 40A, Summer 2023



Agenda

Lots of examples.



Last time

Last time we answered the same question using several
different techniques.

Question 1: There are 20 students in a class. Avi is one of
them. Suppose we select 5 students in the class uniformly at
random without replacement. What is the probability that Avi
is among the 5 selected students?
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With vs. without replacement

Discussion Question

We've determined that a probability that a random sam-
ple of 5 students from a class of 20 without replacement
contains Avi (one student in particular) is %
Suppose we instead sampled with replacement. Would
the resulting probability be equal to, greater than, or
less than 12

a) Equal to

b) Greater than

c) Less than
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Art supplies

Question 2, Part 1: We have 12 art supplies: 5 markers and 7
crayons. In how many ways can we select 4 art supplies?
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Art supplies

Question 2, Part 2: We have 12 art supplies: 5 markers and 7

crayons. In how many ways can we select 4 art supplies such
that we have...

2 markers and 2 crayons?
3 markers and/1 crayon?
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Art supplies

Question 2, Part 3: We have 12 art supplies: 5 markers and 7
crayons. We randomly select 4 art supplies. What's the
probability that we selected at least 2 markers?
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Fair coin

Question 3: Suppose we flip a fair coin 10 times.

What is the probabili J that we see the specific sequence
THTTHTHHTH? ¢ onk

What is the probability that we see an equal number of
heads and tails?
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Unfair coin

Question 4: Suppose we flip an unfair coin 10 times. The coin
is biased such that for each flip, P(heads) = %

What is the probability that we see the specific sequence
THTTHTHHTH?

What is the probability that we see an equal number of
heads and tails?
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Deck of cards

There are 52 cards in a standard deck (4 suits, 13 values).

ge) (3 wluek
2,3,4,56,7,8,9 .10, 1,0, K, A
2,3,4,56,7,8,910,J,Q,K, A
2,3,4,56,7,8,910,)J,Q,K, A
2,3,4,56,7,8,910,J,Q,K, A

In poker, each player is dealt 5 cards, called a hand. The
order of cards in a hand does not matter.



Deck of cards

How many 5 card hands are there in poker?

(55

How many 5 card hands are there where all cards are of
the same suit (a flush)?
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How many 5 card hands are there that include a

four-of-a-kind (four cards of the same value)?
ex) A9 AU, A®, A%, 29
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How many 5 card hands are there that are a straight flush
(all card values %?/nsecutive and of the same suit)?
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How many 5 card hands are there that include exactly one
pair (values aabcd)?
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Summary



Summary

A sequence is obtained by selecting k elements from a
group of n possible elements with replacement, such that
order matters.

k

Number of sequences: n*.

A permutation is obtained by selecting k elements from a
group of n possible elements without replacement, such
that order matters.

Number of permutations: P(n, R) = (n k)l

A combination is obtained by selecting k elements from a
group of n possible elements without replacement, such
that order does not matter.

Number of combinations: (’;) |

(n-R)k!"




