Module 20 - Law of Total Probability and Bayes' Theorem

DSC 40A, Summer 2023

Agenda

- Partitions and the Law of Total Probability.
- Bayes' Theorem.

Law of Total Probability

Example: getting to school

You conduct a survey where you ask students two questions.

1. How did you get to campus today? Trolley, bike, or drive? (Assume these are the only options.)
2. Were you late?

	Late	Not Late
Trolley	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Late Not Late

Trolley	0.06	0.24	0.30
Bike	0.03	0.07	0.10
Drive	0.36	0.24	0.60
(0.45)			

Discussion Question

What's the probability that a randomly selected person was late?
a) 0.24
b) 0.30
(c) 0.45
d) 0.50
e) None of the above

Example: getting to school

Late Not Late

Trolley	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

- Since everyone either takes the trolley, bikes, or drives to school, we have
$P($ Late $)=P($ Late \cap Trolley $)+P($ Late \cap Bike $)+P($ Late \cap Drive $)$

Discussion Question
Avi took the trolley to school. What is the probability that he was late?
a) 0.06
(b) 0.2
c) 0.25
d) 0.45
e) None of the above

$$
\begin{aligned}
P(\text { late } 1 \text { trolley })= & 0.2 \\
= & \frac{P(\text { late } \cap \text { trolley })}{P(\text { trolley })} \\
& \downarrow \quad V \\
& P(\text { trillan late })+P(\text { tolan } \text { not late })
\end{aligned}
$$

Example: getting to school

Late Not Late

Trolley	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

> Since everyone either takes the trolley, bikes, or drives to school, we have
$P($ Late $)=P($ Late \cap Trolley $)+P($ Late \cap Bike $)+P($ Late \cap Drive $)$

- Another way of expressing the same thing:
$P($ Late $)=P$ (Trolley) P (Late Trolley) $+P$ (Bike) $P($ Late $/ B i k e)$
$+P($ Drive $) P($ Late \mid Drive $)$

Partitions

\Rightarrow A set of events $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if
$P P(\underbrace{\left(E_{i} \cap E_{j}\right)}_{\text {any pric of events }}=0$ for all
$\Rightarrow P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{k}\right)=1$.
Equivalently, $P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{k}\right)=1$.
\Rightarrow In other words, $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if every outcome s in S is in exactly one event E_{i}.

Partitions, visualized

Example partitions

- In getting to school, the events Trolley, Bike, and Drive.
- In getting to school, the events Late and Not Late.
- In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
- In rolling a die, the events Even and Odd.
- In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.

Example partitions

- In getting to school, the events Trolley, Bike, and Drive.
- In getting to school, the events Late and Not Late.
- In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
- In rolling a die, the events Even and Odd.
- In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.
- Special case: any event A and its complement \bar{A}.

The Law of Total Probability

If A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(A \stackrel{\downarrow}{\cap} E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$

The Law of Total Probability, visualized

Sw. al ever to 0

The Law of Total Probability

\Rightarrow If A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =\underline{P\left(A \cap E_{1}\right)}+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$

\Rightarrow Since $P\left(A \cap E_{i}\right)=P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)$ by the multiplication rule, an equivalent formulation is

$$
\begin{aligned}
P(A) & =P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)+\ldots+P\left(E_{k}\right) \cdot P\left(A \mid E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)
\end{aligned}
$$

Discussion Question
Lauren is late to school. What is the probability that she took the trolley? Choose the best answer.
a) Close to 0.05
b) Close to 0.15
c) Close to 0.3
d) Close to 0.4

$$
\begin{aligned}
P(\text { trolley late }) & =\frac{P(\text { trill } \cap \text { late })}{P(\text { late })} \\
& =\frac{0.06}{0.45}
\end{aligned}
$$

Bayes' Theorem

Example: getting to school

Now suppose you don't have that entire table. Instead, all you know is

$$
\begin{aligned}
& P(\text { Late })=0.45 . \\
> & P(\text { Trolley })=0.3 . \\
> & \underbrace{P(\text { Late Trolley) })}=0.2 .
\end{aligned} \underbrace{}_{\text {Flip ped }} .
$$

Can you still find P (Trolley/Late)?

$$
\begin{aligned}
P(\text { trolley late }) & =\frac{P(\text { tall a } \cap \text { late })}{P(\text { Late })} \\
& =\frac{P(\text { trolley })-P(\text { late } \mid \text { troller })}{P(\text { late })} \\
& =\frac{0.3 \cdot 0.2}{0.45}=\frac{0.06}{0.45}=0.133^{5}
\end{aligned}
$$

Bayes' Theorem

- Recall that the multiplication rule states that

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

- It also states that

$$
P(B \cap A)=P(B) \cdot P(A \mid B)
$$

\Rightarrow But since $A \cap B=B \cap A$, we have that

$$
P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)
$$

- Re-arranging yields Bayes' Theorem:

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)}
$$

Bayes' Theorem and the Law of Total Probability

- Bayes' Theorem:

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)} \text { Bayes }
$$

- Recall from earlier, for any sample space S, B and \bar{B} partition S. Using the Law of Total Probability, we can re-write $P(A)$ as

$$
P(A)=P(A \cap B)+P(A \cap \bar{B})=P(B) \cdot P(A \mid B)+P(\bar{B}) \cdot P(A \mid \bar{B})
$$

Bayes' Theorem and the Law of Total Probability

- Bayes' Theorem:

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)}
$$

- Recall from earlier, for any sample space S, B and \bar{B} partition S. Using the Law of Total Probability, we can re-write $P(A)$ as

$$
P(A)=P(A \cap B)+P(A \cap \bar{B})=P(B) \cdot P(A \mid B)+P(\bar{B}) \cdot P(A \mid \bar{B})
$$

This means that we can re-write Bayes' Theorem as

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(B) \cdot P(A \mid B)+P(\bar{B}) \cdot P(A \mid \bar{B})}
$$

Example: drug test
$p(A \mid B)$
A manufacturer claims that its drug test will detect steroid use
95% of the time. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). Suppose (10\%) of the Tour de France bike racers use steroids and your favorite cyclist just tested positive. $P(\bar{B})=.9$ What's the probability that they used steroids?

$$
\begin{aligned}
& \text { What's the probability that they used steroids? } \\
& \begin{aligned}
P(B \mid A) & =\frac{P(B) \cdot P(A \mid B)}{P(A)} \quad P(\text { use steroids } \\
& =\frac{P(B) \cdot P(A \mid B)}{P(A \cap B)+P(A \cap \bar{B})} \\
& =\frac{P(B) \cdot P(A \mid B)}{P(B) \cdot P(A \mid B)+P(\bar{B}) \cdot P(A \mid \bar{B})} \\
& \frac{1-9}{.1 .95+.9 \cdot .15} \sim 0.41
\end{aligned}
\end{aligned}
$$

Example: taste test
$I=$ in- nous
$S=$ same $2 d$ Your friend claims to be able to correctly guess what
$F=$ firequrrestaurant a burger came from, after just one bite.
$C=$ cord The probability that she correctly identifies an In-n-Out Burger is 0.55 , a Shake Shack burger is 0.75 , and a Five Guys burger is 0.6.
You buy 5 In-n-Out burgers, 4 Shake Shack burgers, and 1 Five Guys burger, choose one of the burgers randomly, and give it to her.
Question: Given that she guessed it correctly, what's the probability she ate a Shake Shack burger? $\rho(C$ II $)=-5 S \quad P(I)=. S$

$$
\begin{aligned}
& P(s \mid C)=\frac{P(s)-P(c \mid s)}{P(c)} \\
& P(c \mid S)=.75 \quad P(S)=.4 \\
& P C(F)=6 \quad P(F)=.1 \\
& =\frac{p(S) \cdot p(C \mid S)}{p(I) \cdot P(C \mid I)+P(S) \cdot p(C \mid S)+P(F) \cdot P(C) F} \\
& \frac{.4 \cdot .75}{.5 \cdot .55+.4 .75+.1 \cdot 6} \simeq 0.47
\end{aligned}
$$

Summary

Summary

- A set of events $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if each outcome in S is in exactly one E_{i}.
- The Law of Total Probability states that if A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)+\ldots+P\left(E_{k}\right) \cdot P\left(A \mid E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)
\end{aligned}
$$

- Bayes' Theorem states that

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)}
$$

- We often re-write the denominator $P(A)$ in Bayes' Theorem using the Law of Total Probability.

