Module 20 – Law of Total Probability and Bayes' Theorem

DSC 40A, Summer 2023

Agenda

- Partitions and the Law of Total Probability.
- ▶ Bayes' Theorem.

Example: getting to school

You conduct a survey where you ask students two questions.

- 1. How did you get to campus today? Trolley, bike, or drive? (Assume these are the only options.)
- 2. Were you late?

ate	Not Lat	Late	
	0.24	0.06	Trolley
	0.07	0.03	Bike
	0.24	0.36	Drive
	0.24	0.36	Drive

	Late	Not L	Late	
Trolley	0.06	0.24	0.30	
Bike	0.03	0.07	0.10	
Drive	0.36	0.24	ð - 67	
	0.45	0.55		

Discussion Question

What's the probability that a randomly selected person was late?

- a) 0.24
- a) 0.2-
- b) 0.30 (c) 0.45
- d) 0.50
- e) None of the above

Example: getting to school

	Late	Not Late
Trolley	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Since everyone either takes the trolley, bikes, or drives to school, we have

$$P(\text{Late} \cap \text{Trolley}) + P(\text{Late} \cap \text{Bike}) + P(\text{Late} \cap \text{Drive})$$

			_	
	Late	Not Late		
Trolley	0.06	0.24 1	- 0.30	
Bike	0.03	0.07	=	0.9
Drive	0.36	0.24		U.
			_	

Discussion Question

Avi took the trolley to school. What is the probability that he was late? = 0.7

- a) 0.06
 - 0.2
 - 0.25
- d) 0.45
- e) None of the above

Example: getting to school

	Late	Not Late
Trolley	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

 Since everyone either takes the trolley, bikes, or drives to school, we have

$$P(\text{Late} \cap \text{Frolley}) + P(\text{Late} \cap \text{Bike}) + P(\text{Late} \cap \text{Drive})$$

Another way of expressing the same thing:

$$P(\text{Late}) = P(\text{Trolley}) P(\text{Late}|\text{Trolley}) + P(\text{Bike}) P(\text{Late}|\text{Bike})$$

+ P(Drive) P(Late|Drive)

Partitions

- A set of events $E_1, E_2, ..., E_k$ is a **partition** of S if
 - P($E_i \cap E_j$) = 0 for all pairs $i \neq j$.
 - $P(E_1 \cup E_2 \cup ... \cup E_k) = 1.$
 - ► Equivalently, $P(E_1) + P(E_2) + ... + P(E_k) = 1$.
- In other words, E_1 , E_2 , ..., E_k is a partition of S if every outcome S in S is in **exactly** one event E_i .

Partitions, visualized

Example partitions

- ▶ In getting to school, the events Trolley, Bike, and Drive.
- In getting to school, the events Late and Not Late.
- In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
- In rolling a die, the events Even and Odd.
- In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.

Example partitions

- ▶ In getting to school, the events Trolley, Bike, and Drive.
- In getting to school, the events Late and Not Late.
- In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
- In rolling a die, the events Even and Odd.
- In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.
- **Special case**: any event A and its complement \bar{A} .

The Law of Total Probability

If A is an event and $E_1, E_2, ..., E_k$ is a **partition** of S, then

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + ... + P(A \cap E_k)$$

$$= \sum_{i=1}^{k} P(A \cap E_i)$$

The Law of Total Probability, visualized

The Law of Total Probability

If A is an event and $E_1, E_2, ..., E_k$ is a **partition** of S, then

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + ... + P(A \cap E_k)$$

$$= \sum_{i=1}^{k} P(A \cap E_i)$$

Since $P(A \cap E_i) = P(E_i) \cdot P(A|E_i)$ by the multiplication rule, an equivalent formulation is

$$P(A) = P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2) + \dots + P(E_k) \cdot P(A|E_k)$$

$$= \sum_{i=1}^k P(E_i) \cdot P(A|E_i)$$

Discussion Question

Lauren is late to school. What is the probability that she took the trolley? Choose the best answer.

a) Close to 0.05

Bayes' Theorem

Example: getting to school

- Now suppose you don't have that entire table. Instead, all you know is
 - ► *P*(Late) = 0.45.
 - ► *P*(Trollev) = 0.3.
 - P(Late|Trolley) = 0.2.
- Can you still find P(Trolley|Late)?

$$P(+rolley | late) = \frac{p(trolley n late)}{p(late)}$$

$$= \frac{p(+rolley) - p(late | trolley)}{p(late)}$$

$$= \frac{0.3 \cdot 0.2}{0.45} = \frac{0.06}{5.45} = 0.133$$

Bayes' Theorem

Recall that the multiplication rule states that

$$P(A \cap B) = P(A) \cdot P(B|A)$$

It also states that

$$P(B \cap A) = P(B) \cdot P(A|B)$$

▶ But since $A \cap B = B \cap A$, we have that

$$P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

Re-arranging yields Bayes' Theorem:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

Bayes' Theorem and the Law of Total Probability

Bayes' Theorem:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$
 Bayes

Recall from earlier, for any sample space S, B and \bar{B} partition S. Using the Law of Total Probability, we can re-write P(A) as

$$P(A) = P(A \cap B) + P(A \cap \overline{B}) = P(B) \cdot P(A|B) + P(\overline{B}) \cdot P(A|\overline{B})$$

Bayes' Theorem and the Law of Total Probability

Bayes' Theorem:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

Recall from earlier, for any sample space S, B and \bar{B} partition S. Using the Law of Total Probability, we can re-write P(A) as

$$P(A) = P(A \cap B) + P(A \cap \bar{B}) = P(B) \cdot P(A|B) + P(\bar{B}) \cdot P(A|\bar{B})$$

This means that we can re-write Bayes' Theorem as

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(B) \cdot P(A|B) + P(\bar{B}) \cdot P(A|\bar{B})}$$

Example: drug test $\rho(A^{\setminus R)}$

A manufacturer claims that its drug test will **detect steroid use**95% of the time. What the company does not tell you is that

95% of the time. What the company does not tell you is that (15% of all steroid-free individuals also test positive (the false positive rate). Suppose (0%) of the Tour de France bike racers use steroids and your favorite cyclist just tested positive. P(Ε) = .9

What's the probability that they used steroids? $P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)} \qquad P(use steroids | positive test)$

$$= \frac{P(B) \cdot P(A|B)}{P(A \cap B) + P(A \cap B)}$$

$$= \frac{P(B) \cdot P(A|B)}{P(B) \cdot P(A|B) + P(B)} \cdot P(A|B)$$

$$= \frac{1 \cdot .95}{P(B) \cdot P(A|B) + P(B)} \cdot P(A|B)$$

Example: taste test

Guys burger is 0.6.

S = ship Your friend claims to be able to correctly guess what == frequences from, after just one bite. The probability that she correctly identifies an In-n-Out Burger is 0.55, a Shake Shack burger is 0.75, and a Five

- You buy 5 In-n-Out burgers, 4 Shake Shack burgers, and 1 Five Guys burger, choose one of the burgers randomly, and give it to her.
- Question: Given that she guessed it correctly, what's the probability she ate a Shake Shack burger? (c|T) = -SS p(T) = S p(S) = P(S) P(C|S) p(C|S) = -TS p(C|S)

Summary

Summary

- A set of events $E_1, E_2, ..., E_k$ is a **partition** of S if each outcome in S is in exactly one E_i .
- ► The Law of Total Probability states that if A is an event and $E_1, E_2, ..., E_k$ is a **partition** of S, then

$$P(A) = P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2) + \dots + P(E_k) \cdot P(A|E_k)$$

$$= \sum_{i=1}^{k} P(E_i) \cdot P(A|E_i)$$

Bayes' Theorem states that

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

We often re-write the denominator P(A) in Bayes' Theorem using the Law of Total Probability.