Module 23 - Naive Bayes

DSC 40A, Summer 2023

Agenda
Classification.

Classification and conditional independence.

Naive Bayes.
Y probabilistic approach to supervised learning

Recap: Bayes' theorem, independence, and conditional independence

- Bayes' theorem: $P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}$.
- A and B are independent if $P(A \cap B)=P(A) \cdot P(B)$.
- A and B are conditionally independent given C if $P((A \cap B) \mid C)=P(A \mid C) \cdot P(B \mid C)$.
- In general, there is no relationship between independence and conditional independence.

Classification

Taxonomy of machine learning

Classification problems

- Like with regression, we're interested in making predictions based on data (called training data) for which we know the value of the response variable.
- The difference is that the response variable is now categorical.
- Categories are called classes.
- Example classification problems:
$\underset{\text { class }}{\text { cmance }} \rightarrow$ Deciding whether a patient has kidney disease. \rightarrow binary
multichss" \rightarrow Identifying handwritten digits.
\Rightarrow Determining whether an avocado is ripe. \rightarrow binort
$\xrightarrow[\text { class }]{\text { imblance }} \rightarrow$ Predicting whether credit card activity is fraudulent.

Example: avocados
6 out of sample
You have a green-black avocado, and want to know if it is ripe.

Question: Based on this data, would you predict that your avocado is ripe or unripe?
S queen black

$$
3 / s \text { ripe }
$$

Example: avocados

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

Strategy: Calculate two probabilities:

$$
\begin{aligned}
& P(\text { ripe lgreen-black })=\frac{3}{5} \\
& P(\text { unripelgreen-black })=\frac{2}{5}
\end{aligned}
$$

Then, predict the class with a larger probability.

Estimating probabilities

- We would like to determine P (ripelgreen-black) and P (unripelgreen-black) for all avocados in the universe.
- All we have is a single dataset, which is a sample of all avocados in the universe.
- We can estimate these probabilities by using sample proportions.
$P($ ripe lgreen-black $) \approx \frac{\# \text { ripe green-black avocados in sample }}{\# \text { green-black avocados in sample }}$
- Per the law of large numbers in DSC 10, larger samples lead to more reliable estimates of population parameters.

Example: avocados

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

$$
\begin{aligned}
& P(\text { ripelgreen-black })=3 / 5 \\
& P(\text { unripelgreen-black })=2 / 5
\end{aligned}
$$

Bayes' theorem for classification

\Rightarrow Suppose that A is the event that an avocado has certain features, and B is the event that an avocado belongs to a certain class. Then, by Bayes' theorem:

- More generally:

$$
\begin{gathered}
P(\text { class|features })=\frac{\begin{array}{c}
P(\text { class }) \cdot P(\text { features } \mid c l a s s)
\end{array}}{P(\text { features })} \\
\text { qreen black }
\end{gathered}
$$

- What's the point?
- Usually, it's not possible to estimate P(class|features) directly from the data we have.
- Instead, we have to estimate P (class), P (features|class), and P (features) separately.

Example: avocados
You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

Example: avocados

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
	(class \mid features $)=\frac{P(\text { class }) \cdot P(\text { features } \mid \text { class })}{P(\text { features })}$
bright green	
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

Example: avocados

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

$P($ class \mid features $)=\frac{P(\text { class }) \cdot P(\text { features } \mid \text { class })}{P(\text { features })}$
Shortcut: Both probabilities have the same denominator. The larger one is the one with the larger numerator.

P (ripelgreen-black)
P (unripelgreen-black)

Classification and conditional independence

Example: avocados, but with more features

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe
Cofar	Varkfa		

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Example: avocados, but with more features

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate P (ripe|features) and P (unripe|features) and choose the class with the larger probability.

$$
\begin{gathered}
P(\text { ripelfirm, green-black, Zutano) } \\
P(\text { unripelfirm, green-black, Zutano) }
\end{gathered}
$$

Example: avocados, but with more features

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Issue: We have not seen a firm green-black Zutano avocado before.

This means that P (ripelfirm, green-black, Zutano) and P (unripe|firm, green-black, Zutano) are undefined.

A simplifying assumption

- We want to find P (ripelfirm, green-black, Zutano), but there are no firm green-black Zutano avocados in our dataset.
- Bayes' theorem tells us this probability is equal to
$P\left(\right.$ ripe ${ }^{\text {firm, }}$ green-black, Zutano $)=\frac{P(\text { ripe }) \cdot P(\text { firm, green-black, Zutanolripe })}{P(\text { firm, green-black, Zutano })}$
- Key idea: Assume that features are conditionally independent given a class (e.g. ripe).
$P($ firm, green-black, Zutano|ripe $)=P$ (firm \mid ripe $) \cdot P($ green-black \mid ripe $) \cdot P($ Zutano \mid ripe $)$

Example: avocados, but with more features

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$
\begin{aligned}
& P(\text { ripe firm, green-black, Zutano })=\frac{P(\text { ripe }) \cdot P(\text { firm, green-black, Zutanolripe })}{}
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 11 \cdot 1 / 7 \cdot 3 / 7 \cdot 2 / 7=\frac{42}{3723}=6 / 539
\end{aligned}
$$

$$
\begin{aligned}
& 4 / 113 / 4 \cdot 2 / 4 \cdot 2 / 4 \\
& 3 / 44
\end{aligned}
$$

Example: avocados, but with more features

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?
$P($ unripelfirm, green-black, Zutano $)=\frac{P(\text { unripe }) \cdot P(\text { firm, green-black, Zutanolunripe })}{P(\text { firm, green-black, Zutano })}$

Conclusion

- The numerator of P (ripe firm, green-black, Zutano) is $\frac{6}{539}$.
- The numerator of P (unripe|firm, green-black, Zutano) is $\frac{6}{88} \cdot 3 / 44$

Both probabilities have the same denominator, P (firm, green-black, Zutano).

- Since we're just interested in seeing which one is larger, we can ignore the denominator and compare numerators.
- Since the numerator for unripe is larger than the numerator for ripe, we predict that our avocado is unripe.

Naive Bayes

Naive Bayes classifier

- We want to predict a class, given certain features.
- Using Bayes' theorem, we write

$$
P(\text { class } \mid \text { features })=\frac{P(\text { class }) \cdot P(\text { features } \mid \text { class })}{P(\text { features })}
$$

- For each class, we compute the numerator using the naive assumption of conditional independence of features given the class.
- We estimate each term in the numerator based on the training data.
- We predict the class with the largest numerator.
- Works if we have multiple classes, too!

Dictionary

Definitions from Oxford Languages Learn more

(1) na.ive

adjective
(of a person or action) showing a lack of experience, wisdom, or judgment.
"the rather naive young man had been totally misled"

- (of a person) natural and unaffected; innocent.
"Andy had a sweet, naive look when he smiled" Similar: innocent unsophisticated artless ingenuous inexperienced \checkmark
- of or denoting art produced in a straightforward style that deliberately rejects sophisticated artistic techniques and has a bold directness resembling a child's work, typically in bright colors with little or no perspective.

Example: avocados, again

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Has	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Has	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hes avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$
7 / 11 \cdot 4 / 7 \cdot 3 / 3 \cdot 5
$$

$$
4 / 11
$$

Uh oh...

- There are no soft unripe avocados in the data set.

The estimate $P($ soft \mid unripe $) \approx \frac{\# \text { soft unripe avocados }}{\# \text { unripe avocados }}$ is 0 .

- The estimated numerator, P (unripe) $\cdot P$ (soft, green-black, Hass|unripe) $=P$ (unripe) . P (soft|unripe) $\cdot P$ (green-black|unripe) $\cdot P$ (Hass|unripe), is also 0 .
- But just because there isn't a soft unripe avocado in the data set, doesn't mean that it's impossible for one to exist!
- Idea: Adjust the numerators and denominators of our estimate so that they're never 0 .

Smoothing

> Without smoothing:

$$
\begin{aligned}
P(\text { soft lunripe }) & \approx \frac{\text { \# soft unripe }}{\# \text { soft unripe }+ \text { \# medium unripe }+\# \text { firm unripe }} \\
P(\text { medium lunripe }) & \approx \frac{\text { \# medium unripe }}{\# \text { soft unripe }+ \text { \# medium unripe }+\# \text { firm unripe }} \\
P(\text { firm lunripe }) & \approx \frac{\text { \# firm unripe }}{\# \text { soft unripe }+ \text { \# medium unripe }+ \text { \# firm unripe }}
\end{aligned}
$$

- With smoothing:

$$
\begin{aligned}
P(\text { soft lunripe }) & \approx \frac{\text { \# soft unripe }+1}{\# \text { soft unripe }+1+\# \text { medium unripe }+1+\# \text { firm unripe }+1} \\
P(\text { medium } \mid \text { unripe }) & \approx \frac{\# \text { medium unripe }+1}{\# \text { soft unripe }+1+\# \text { medium unripe }+1+\# \text { firm unripe }+1} \\
P(\text { firm |unripe }) & \approx \frac{\# \text { firm unripe }+1}{\# \text { soft unripe }+1+\# \text { medium unripe }+1+\# \text { firm unripe }+1}
\end{aligned}
$$

- When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

Example: avocados, with smoothing

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Using Naive Bayes, with smoothing, would you predict that your avocado is ripe or unripe?

Summary

Summary

- In classification, our goal is to predict a discrete category, called a class, given some features.
- The Naive Bayes classifier works by estimating the numerator of P (class|features) for all possible classes.
- It uses Bayes' theorem:

$$
P(\text { class } \mid \text { features })=\frac{P(\text { class }) \cdot P(\text { features } \mid c l a s s)}{P(\text { features })}
$$

- It also uses a simplifying assumption, that features are conditionally independent given a class:
$P($ features \mid class $)=P\left(\right.$ feature ${ }_{1} \mid$ class $) \cdot P\left(\right.$ feature ${ }_{2} \mid$ class $) \cdot \ldots$

