Module 23 – Naive Bayes

DSC 40A, Summer 2023

Agenda

Classification.

- Classification and conditional independence.
- ► Naive Bayes. Spool: listic approach to supervised learning

Recap: Bayes' theorem, independence, and conditional independence

► Bayes' theorem:
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$
.

- A and B are **independent** if $P(A \cap B) = P(A) \cdot P(B)$.
- A and B are **conditionally independent** given C if $P((A \cap B)|C) = P(A|C) \cdot P(B|C)$.
 - In general, there is no relationship between independence and conditional independence.

Classification

Taxonomy of machine learning

Classification problems

- Like with regression, we're interested in making predictions based on data (called training data) for which we know the value of the response variable.
- The difference is that the response variable is now categorical.
- Categories are called classes.
- Example classification problems:
 - ▶ Deciding whether a patient has kidney disease.→
 > Identifying handwritten digits.
 - Determining whether an avocado is ripe. -> binart
 - Predicting whether credit card activity is fraudulent.

6 out of sample **Example:** avocados

You have a green-black avocado, and want to know if it is ripe.

-	•	٦
color	ripeness	
bright green	unripe	
green-black	ripe	T R
purple-black	ripe]
green-black	unripe	N
purple-black	ripe	1
bright green	unripe	1
green-black	ripe	R
purple-black	ripe	1
green-black	ripe	R
green-black	unripe	1 //
purple-black	ripe))
training	Inter	

Question: Based on this data. would you predict that your avocado is ripe or unripe?

S green black 3/5 rije

2/s undic

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

Strategy: Calculate two probabilities:

 $P(ripe|green-black) = \frac{3}{5}$

 $P(\text{unripe}|\text{green-black}) = \frac{2}{2}$

Then, predict the class with a **larger** probability.

Estimating probabilities

- We would like to determine P(ripe|green-black) and P(unripe|green-black) for all avocados in the universe.
- All we have is a single dataset, which is a sample of all avocados in the universe.
- We can estimate these probabilities by using sample proportions.

 $P(ripe|green-black) \approx \frac{\# ripe green-black avocados in sample}{\# green-black avocados in sample}$

Per the law of large numbers in DSC 10, larger samples lead to more reliable estimates of population parameters.

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness	
bright green	unripe	
green-black	ripe	1
purple-black	ripe	١
green-black	unripe	
purple-black	ripe	
bright green	unripe	ľ
green-black	ripe	1
purple-black	ripe	
green-black	ripe	
green-black	unripe	1
purple-black	ripe	

 $P(ripe|green-black) = \frac{3}{5}$

 $P(unripe|green-black) = \frac{2}{3}$

Bayes' theorem for classification

Suppose that A is the event that an avocado has certain features, and B is the event that an avocado belongs to a certain class. Then, by Bayes' theorem:

 $P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$ More generally: $P(class|features) = \frac{P(class) \cdot P(features|class)}{P(features)}$

- What's the point?
 - Usually, it's not possible to estimate P(class|features) directly from the data we have.
 - Instead, we have to estimate P(class), P(features|class), and P(features) separately.

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness	$P(class features) = \frac{P(class) \cdot P(features class)}{P(features)}$
bright green	unripe	P(ripe gren-black) = P(ripe) - P(anulled ripe)
green-black	ripe	p(sige) greature = Terres
purple-black	ripe	P(green bluele)
green-black	unripe <mark>(</mark>	7/11 . 3/5
purple-black	ripe	
bright green	unripe <mark>(</mark>	$= \frac{s_{1}}{s_{1}}$
green-black	ripe	
purple-black	ripe	P(united green-blacke) 4/11. 2/4
green-black	ripe	4/11 - 2/4 2
green-black	unripe	<u> </u>
purple-black	ripe	S/11 - 5

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness	$P(class features) = \frac{P(class) \cdot P(features class)}{P(features)}$
bright green	unripe	P(leatures)
green-black	ripe	
purple-black	ripe	
green-black	unripe	
purple-black	ripe	
bright green	unripe	
green-black	ripe	
purple-black	ripe	
green-black	ripe	
green-black	unripe	
purple-black	ripe	

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

 $P(class|features) = \frac{P(class) \cdot P(features|class)}{P(features)}$

Shortcut: Both probabilities have the same denominator. The larger one is the one with the larger numerator.

P(ripe|green-black)

P(unripe|green-black)

Classification and conditional independence

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe
Color IA leta			

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate *P*(ripe|features) and *P*(unripe|features) and choose the class with the **larger** probability.

P(ripe|firm, green-black, Zutano)

P(unripe|firm, green-black, Zutano)

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Issue: We have not seen a firm green-black Zutano avocado before.

This means that *P*(ripe|firm, green-black, Zutano) and *P*(unripe|firm, green-black, Zutano) are undefined.

A simplifying assumption

We want to find P(ripe|firm, green-black, Zutano), but there are no firm green-black Zutano avocados in our dataset.

Bayes' theorem tells us this probability is equal to

P(ripe|firm, green-black, Zutano) = $\frac{P(\text{ripe}) \cdot P(\text{firm, green-black, Zutano}|\text{ripe})}{P(\text{firm, green-black, Zutano})}$

Key idea: Assume that features are **conditionally independent** given a class (e.g. ripe).

P(firm, green-black, Zutano|ripe) = P(firm|ripe)·P(green-black|ripe)·P(Zutano|ripe)

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

 $P(ripe|firm, green-black, Zutano) = \frac{P(ripe) \cdot P(firm, green-black, Zutano|ripe)}{2 ubrolnk?} P(firm, green-black, Zutano)$ $= \frac{P(ripc) \cdot P(firm, lnk?) \cdot P(q \mid lnk?) \cdot P(z ubrolnk?) P(firm, green-black, Zutano)}{\frac{7}{11} \cdot \frac{1}{7} \cdot \frac{3}{7} \cdot \frac{2}{7} = \frac{4539}{2773} = \frac{4539}{9539}$ $P(undre) \cdot P(firm \mid undre) - P(q \mid undre) - P(q \mid undre) - P(Zuterno \mid undre)$ $4/(1) = \frac{3}{14} \cdot \frac{2}{4} \cdot \frac{2}{4} \cdot \frac{2}{4}$

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

 $P(\text{unripe}|\text{firm, green-black, Zutano}) = \frac{P(\text{unripe}) \cdot P(\text{firm, green-black, Zutano}|\text{unripe})}{P(\text{unripe})}$ P(firm, green-black. Zutano)

Conclusion

- The numerator of P(ripe|firm, green-black, Zutano) is $\frac{6}{539}$.
- The numerator of P(unripe|firm, green-black, Zutano) is $\frac{6}{88}$. $\frac{9}{44}$

Both probabilities have the same denominator, P(firm, green-black, Zutano).

- Since we're just interested in seeing which one is larger, we can ignore the denominator and compare numerators.
- Since the numerator for unripe is larger than the numerator for ripe, we predict that our avocado is unripe.

Naive Bayes

Naive Bayes classifier

- ▶ We want to predict a class, given certain features.
- Using Bayes' theorem, we write

P(class|features) =
$$rac{P(class) \cdot P(features|class)}{P(features)}$$

- For each class, we compute the numerator using the naive assumption of conditional independence of features given the class.
- We estimate each term in the numerator based on the training data.
- ► We predict the class with the largest numerator.
 - Works if we have multiple classes, too!

Dictionary

Definitions from Oxford Languages · Learn more

adjective

(of a person or action) showing a lack of experience, wisdom, or judgment. "the rather naive young man had been totally misled"

- (of a person) natural and <u>unaffected;</u> innocent.
 "Andy had a sweet, naive look when he smiled"
 Similar: innocent unsophisticated artless ingenuous inexperienced v
- of or denoting art produced in a straightforward style that deliberately rejects sophisticated artistic techniques and has a bold <u>directness resembling</u> a child's work, typically in bright colors with little or no perspective.

Example: avocados, again

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a <u>soft green-black Hass avocado</u>. Based on this data, would you predict that your avocado is ripe or unripe? $P(rlpe) soft, green-black, Hass) = P(rlpe) \cdot P(soft | rlpe) - P(gb|rlpe) \cdot P(gb$

P("Npe | soft, groen-block, Hass) = P("pe) · P(soft | "ye) · P(gb | "ye). Plue 13

Uh oh...

- There are no soft unripe avocados in the data set.
- The estimate $P(\text{soft}|\text{unripe}) \approx \frac{\# \text{ soft unripe avocados}}{\# \text{ unripe avocados}}$ is 0.
- The estimated numerator, P(unripe) · P(soft, green-black, Hass|unripe) = P(unripe) · P(soft|unripe) · P(green-black|unripe) · P(Hass|unripe), is also 0.
- But just because there isn't a soft unripe avocado in the data set, doesn't mean that it's impossible for one to exist!
- Idea: Adjust the numerators and denominators of our estimate so that they're never 0.

Smoothing

Without smoothing:

 $P(\text{soft}|\text{unripe}) \approx \frac{\# \text{ soft unripe}}{\# \text{ soft unripe} + \# \text{ medium unripe} + \# \text{ firm unripe}}$ $P(\text{medium}|\text{unripe}) \approx \frac{\# \text{ medium unripe}}{\# \text{ soft unripe} + \# \text{ medium unripe} + \# \text{ firm unripe}}$ $P(\text{firm}|\text{unripe}) \approx \frac{\# \text{ firm unripe}}{\# \text{ soft unripe} + \# \text{ medium unripe} + \# \text{ firm unripe}}$

With smoothing:

 $P(\text{soft}|\text{unripe}) \approx \frac{\# \text{ soft unripe + 1}}{\# \text{ soft unripe + 1 + \# medium unripe + 1 + \# firm unripe + 1}}$ $P(\text{medium}|\text{unripe}) \approx \frac{\# \text{ medium unripe + 1}}{\# \text{ soft unripe + 1 + \# medium unripe + 1 + \# firm unripe + 1}}$ $P(\text{firm}|\text{unripe}) \approx \frac{\# \text{ firm unripe + 1 + \# firm unripe + 1}}{\# \text{ soft unripe + 1 + \# firm unripe + 1}}$

When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

Example: avocados, with smoothing

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Using Naive Bayes, **with smoothing**, would you predict that your avocado is ripe or unripe?

Summary

Summary

- In classification, our goal is to predict a discrete category, called a class, given some features.
- The Naive Bayes classifier works by estimating the numerator of P(class|features) for all possible classes.
- It uses Bayes' theorem:

P(class|features) =
$$\frac{P(class) \cdot P(features|class)}{P(features)}$$

It also uses a simplifying assumption, that features are conditionally independent given a class:

 $P(\text{features}|\text{class}) = P(\text{feature}_1|\text{class}) \cdot P(\text{feature}_2|\text{class}) \cdot \dots$