Module 2 – Minimizing Mean Absolute Error

DSC 40A, Summer 2023

Agenda

- 1. Recap from Module 1 learning from data.
- 2. Minimizing mean absolute error.
- 3. Identifying another choice of error.

Recap from Module 1 – learning from data

Last time

► **Question:** How do we turn the problem of learning from data into a math problem?

► **Answer:** Through optimization.

A formula for the mean absolute error

We have data:

- ► Suppose our prediction is *h*.
- ► The mean absolute error of our prediction is:

$$R(h) = \frac{1}{5} \left(|\underline{90,000 - h}| + |\underline{94,000 - h}| + |\underline{96,000 - h}| + |\underline{120,000 - h}| + |\underline{160,000 - h}| \right)$$

Many possible predictions

We considered four possible hypotheses for future salary, and computed the mean absolute error of each.

$$h_1 = 150,000 \implies R(150,000) = 42,000$$

$$h_2 = 115,000 \implies R(115,000) = 23,000$$

$$h_3 = \text{mean} = 112,000 \implies R(112,000) = 22,400$$

Of these four options, the median has the lowest MAE. But is it the **best possible prediction overall**?

A general formula for the mean absolute error

- Suppose we collect n salaries, $y_1, y_2, ..., y_n$.
- The mean absolute error of the prediction h is:

$$R(h) = \frac{1}{n} (|h - y_1| + |h - y_2| + \dots + |h - y_n|)$$

$$= \frac{1}{n} \sum_{i=1}^{n} |h - y_i|$$

The best prediction

- ▶ We want the best prediction, h^* .
- ▶ The smaller R(h), the better h.
- ▶ Goal: find h that minimizes R(h).

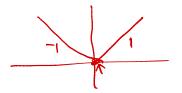
Discussion Question

Can we use calculus to minimize R?

Minimizing mean absolute error

Minimizing with calculus

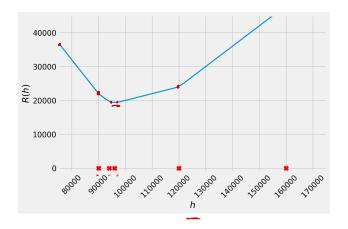
Calculus: take derivative with respect to h, set equal to zero, solve.



Uh oh...

- ► R is not differentiable.
- ► We can't use calculus to minimize it.
- Let's try plotting *R*(*h*) instead.

Plotting the mean absolute error

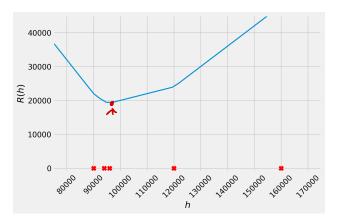


Discussion Question

A local minimum occurs when the slope goes from . Select all that apply.

- positive to negative negative to positive
- positive to zero.
- negative to zero.

Goal



- Find where slope of *R* goes from negative to non-negative.
- ► Want a formula for the slope of *R* at *h*.

Sums of linear functions

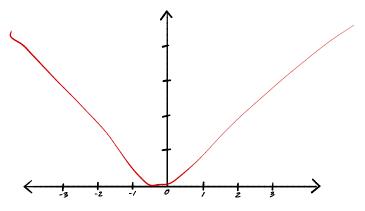
Let

$$f_1(x) = 3x + 7$$
 $f_2(x) = 5x - 4$ $f_3(x) = -2x - 8$

▶ What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$?

Absolute value functions

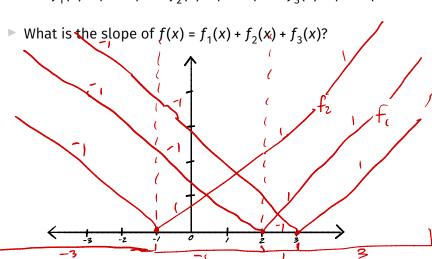
Recall, f(x) = |x - a| is an absolute value function centered at x = a.

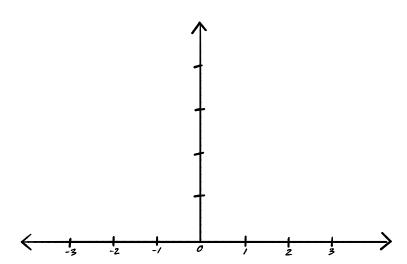


Sums of absolute values

▶ Let

$$f_1(x) = |x-2|$$
 $f_2(x) = |x+1|$ $f_3(x) = |x-3|$





The slope of the mean absolute error

R(h) is a sum of absolute value functions (times $\frac{1}{n}$):

$$R(h) = \frac{1}{n} (|h - y_1| + |h - y_2| + ... + |h - y_n|)$$

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |h - y_i|$$

$$= \frac{1}{n} \left(\frac{1}{n} \left(\frac{1}{n} - \frac{1}{n} \right) + \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} + \frac{1}{n} \frac$$

$$= \frac{1}{n} \left(\xi(h-y_i) + \xi^{-}(h-y_i) \right)$$

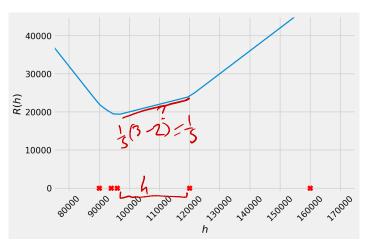
$$= \frac{1}{n} \left(\xi(h-y_i) + \xi^{-}(h-y_i) \right)$$

$$= \frac{1}{n} \left(\xi(h-y_i) + \xi^{-}(h-y_i) \right)$$

The slope of the mean absolute error

The slope of *R* at *h* is:

$$\frac{1}{n} \cdot [(\# \text{ of } y_i' \text{s} < h) - (\# \text{ of } y_i' \text{s} > h)]$$



Where the slope's sign changes

The slope of R at h is:

$$\frac{1}{n} \cdot [(\# \text{ of } y_i' \text{s} < h) - (\# \text{ of } y_i' \text{s} > h)]$$

Discussion Question

Suppose that *n* is odd. At what value of *h* does the slope of R go from negative to non-negative?

- A) $h = \text{mean of } y_1, ..., y_n$ B) $h = \text{median of } y_1, ..., y_n$ C) $h = \text{mode of } y_1, ..., y_n$

The median minimizes mean absolute error, when *n* is odd

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
- We just determined that when n is odd, the answer is Median(y₁,...,y_n). This is because the median has an equal number of points to the left of it and to the right of it.
- ▶ But wait what if *n* is **even**?

Discussion Question

Consider again our example dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

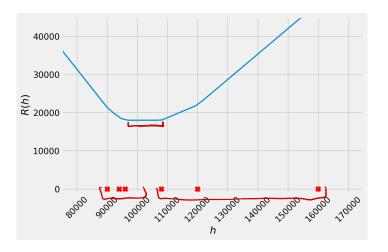
Suppose we collect a 6th salary, so that our data is now

90,000 94,000 96,000 108,000 120,000 160,000

Which of the following correctly describes the h^* that minimizes mean absolute error for our new dataset?

- A) 96,000 only
- B) 108,000 only
- C) 102,000 only
- D) Any value in the interval [96,000, 108,000]

Plotting the mean absolute error, with an even number of data points



What do you notice?

The median minimizes mean absolute error

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
- Regardless of if n is odd or even, the answer is $h^* = \text{Median}(y_1, ..., y_n)$. The **best prediction**, in terms of mean absolute error, is the **median**.
 - ▶ When *n* is odd, this answer is unique.
 - When *n* is even, any number between the middle two data points also minimizes mean absolute error.
 - We define the median of an even number of data points to be the mean of the middle two data points.

Identifying another type of error

Two things we don't like

- 1. Minimizing the mean absolute error wasn't so easy.
- 2. Actually **computing** the median isn't so easy, either.
 - Question: Is there another way to measure the quality of a prediction that avoids these problems?

The mean absolute error is not differentiable

- We can't compute $\frac{d}{dh}|y_i h|$.
- ► Remember: $|y_i h|$ measures how far h is from y_i .
- ► Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i , and
 - 2. is differentiable?

The mean absolute error is not differentiable

- We can't compute $\frac{d}{dh}|y_i h|$.
- Remember: $|y_i h|$ measures how far h is from y_i .
- ▶ Is there something besides $|y_i h|$ which:
 - (1. Measures how far h is from y_i , and
 - 2. is differentiable?

Discussion Question

Which of these would work?

a)
$$e^{|y_i-h|}$$

c) $|y_i-h|^3 V$

$$(b) |y_i - h|^2$$

$$(b) |y_i - h|^2$$

$$(c) |y_i - h|^2$$

c)
$$|y_i - h|^3$$

d)
$$\cos(y_i - h)$$

Why?

$$\frac{d}{dh} (yh)^{2} = 2(yh) \cdot -1$$

$$-2(yh)$$

$$2(h-y)$$

Summary

Summary

- Our first problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
 - ► The answer is: Median $(y_1, ..., y_n)$.
 - ► The **best prediction**, in terms of mean absolute error, is the **median**.
- We then started to consider another type of error that is differentiable and hence is easier to minimize.
- ▶ **Next time:** We will find the value of *h** that minimizes this other error, and see how it compares to the median.