Module 4 – Center and Spread, Other Loss Functions

DSC 40A, Summer 2023

Announcements

- Homework 1 is due July 11 at 11:59pm.
 - LaTeX template available if you want to type your answers.
 - Make sure to explain your answers! Don't just write a number; show how you got it.
- Discussion section is on Friday.

Agenda

- Recap of empirical risk minimization.
- Center and spread.
- ► A new loss function.

Recap of empirical risk minimization

Empirical risk minimization

- **Goal**: Given a dataset $y_1, y_2, ..., y_n$, determine the best prediction h^* .
- Strategy:
 - Choose a loss function, L(h, y), that measures how far any particular prediction h is from the "right answer" y.
 - 2. Minimize **empirical risk** (also known as average loss) over the entire dataset. The value(s) of <u>h</u> that minimize empirical risk are the resulting "best predictions".

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

Absolute loss and squared loss

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

Absolute loss: $L_{abs}(h, y) = |y - h|$.

Empirical risk: $R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$. Also called "mean absolute error".

Minimized by $h^* = \text{Median}(y_1, y_2, ..., y_n)$.

Squared loss: $L_{sq}(h, y) = (y - h)^2$.

Empirical risk: $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$. Also called "mean squared error".

Minimized by $h^* = \text{Mean}(y_1, y_2, ..., y_n)$.

Discussion Question

Consider a dataset y₁, y₂, ..., y_n. Recall,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Is it true that, for any *h*, $[R_{abs}(h)]^2 = R_{sq}(h)$? a) True b) False

Center and spread

What does it mean?

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

The input h* that minimizes R(h) is some measure of the center of the data set.

e.g. median, mean, mode.

The minimum output R(h*) represents some measure of the spread, or variation, in the data set.

Absolute loss

The empirical risk for the absolute loss is

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

► $R_{abs}(h)$ is minimized at h^* = Median $(y_1, y_2, ..., y_n)$.

• Therefore, the minimum value of $R_{abs}(h)$ is

$$R_{abs}(h^*) = R_{abs}(\text{Median}(y_1, y_2, ..., y_n))$$

= $\frac{1}{n} \sum_{i=1}^{n} |y_i - \text{Median}(y_1, y_2, ..., y_n)|.$

Mean absolute deviation from the median

The minimium value of R_{abs}(h) is the mean absolute deviation from the median.

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - Median(y_1, y_2, ..., y_n)|$$

It measures how far each data point is from the median, on average.

Discussion Question				1+0+0#
For the data set 2, 3, 3, 4, what is the mean absolut deviation from the median?				ч 2
a) 0	b) $\frac{1}{2}$	c) 1	d) 2	4

Mean absolute deviation from the median

Squared loss

The empirical risk for the squared loss is

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

$$\triangleright R_{sq}(h) \text{ is minimized at } h^* = Mean(y_1, y_2, \dots, y_n).$$

• Therefore, the minimum value of $R_{sq}(h)$ is

$$R_{sq}(h^*) = R_{sq}(Mean(y_1, y_2, ..., y_n))$$

= $\frac{1}{n} \sum_{i=1}^{n} (y_i - Mean(y_1, y_2, ..., y_n))^2.$

Variance

The minimium value of R_{sq}(h) is the mean squared deviation from the mean, more commonly known as the variance.

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \text{Mean}(y_1, y_2, \dots, y_n))^2$$

- It measures the squared distance of each data point from the mean, on average.
- Its square root is called the standard deviation.

Variance

0-1 loss

The empirical risk for the 0-1 loss is

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}$$

- This is the proportion (between 0 and 1) of data points not equal to h.
- \triangleright $R_{0,1}(h)$ is minimized at $h^* = \text{Mode}(y_1, y_2, \dots, y_n)$.
- ► Therefore, $R_{0,1}(h^*)$ is the proportion of data points not equal to the mode.

A poor way to measure spread

- The minimium value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

Summary of center and spread

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these risk functions are various measures of spread.
- There are many different ways to measure both center and spread. These are sometimes called descriptive statistics.

A new loss function

Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{abs}(h, y) = |y h|$:

Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{sq}(h, y) = (y h)^2$:

Discussion Question

Suppose *L* considers all outliers to be equally bad. What would it look like far away from *y*?

A very insensitive loss

• We'll call this loss L_{ucsd} because we made it up at UCSD.

Discussion Question

Which of these could be $L_{ucsd}(h, y)$?

Adding a scale parameter

- Problem: L_{ucsd} has a fixed scale. This won't work for all datasets.
 - If we're predicting temperature, and we're off by 100 degrees, that's bad.
 - If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
 - What we consider to be an outlier depends on the scale of the data.
- Fix: add a scale parameter, σ :

$$L_{ucsd}(h, y) = 1 - e^{-(y-h)^2/\sigma^2}$$

Scale parameter controls width of bowl

Empirical risk minimization

We have salaries y₁, y₂, ..., y_n.
 Southing
 To find prediction, ERM says to minimize the average loss:

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \underline{L_{ucsd}(h, y_i)}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

Let's plot R_{ucsd}

Recall:

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

- Once we have data $y_1, y_2, ..., y_n$ and a scale σ , we can plot $R_{ucsd}(h)$.
- Let's try several scales, σ, for the data scientist salary data.

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Minimizing R_{ucsd}

- ▶ To find the best prediction, we find h^* minimizing $R_{ucsd}(h)$.
- $R_{ucsd}(h)$ is differentiable.
- ► To minimize: take derivative, set to zero, solve.

Step 1: Taking the derivative

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[\frac{1 - e^{-(y_i - h)^2 / \sigma^2}}{1 - e^{-(y_i - h)^2 / \sigma^2}} \right] \right)$$

Step 2: Setting to zero and solving

We found:

$$\frac{d}{dh}R_{ucsd}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^n (h - y_i) \cdot e^{-(h - y_i)^2/\sigma^2}$$

Now we just set to zero and solve for h:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

We can calculate derivative, but we can't solve for h; we're stuck again.

Summary

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these empirical risk functions are various measures of spread.
- We came up with a more complicated loss function, L_{ucsd}, that treats all outliers equally.
 - We weren't able to minimize its empirical risk R_{ucsd} by hand.
- Next Time: We'll learn a computational tool to approximate the minimizer of R_{ucsd}.