Module 4 – Center and Spread, Other Loss Functions

DSC 40A, Summer 2023

Announcements

- ▶ Homework 1 is due **July 11 at 11:59pm**.
	- \blacktriangleright LaTeX template available if you want to type your answers.
	- \triangleright Make sure to explain your answers! Don't just write a number; show how you got it.
- \triangleright Discussion section is on Friday.

Agenda

- \blacktriangleright Recap of empirical risk minimization.
- ▶ Center and spread.
- \triangleright A new loss function.

Recap of empirical risk minimization

Empirical risk minimization

- **Goal**: Given a dataset $y_1, y_2, ..., y_n$, determine the best prediction h^* .
- Strategy:
- 1. Choose a **loss function**, (ℎ,), that measures how far any particular prediction h is from the "right answer" v. **sk minimization**

n a dataset $y_1, y_2, ..., y_n$, c
 h^* .

e a loss function, $L(h, y)$,

articular prediction *h* is f $\sqrt{200}$ sures how
right answ
 $\sum_{\substack{\text{average} \text{ is a}}{n \text{ that}}}$
	- 2. Minimize **empirical risk** (also known as average loss) Minimize empirical risk (also known as averagover the entire dataset. The value(s) of h that
over the entire dataset. The value(s) of h that minimize empirical risk are the resulting "best predictions".

$$
R(h)=\frac{1}{n}\sum_{i=1}^n L(h,y_i)
$$

Absolute loss and squared loss

 \triangleright General form of empirical risk:

\n- **b So lute loss and squared loss**
\n- **b General form of empirical risk:**
\n- $$
R(h) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{L(h, y_i)}_{\text{abs}}.
$$
\n- **Absolute loss:**
$$
L_{\text{abs}}(h, y) = |y - h|.
$$
\n- **b Empirical risk:**
$$
R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|.
$$
 Also called "mean **absolute error".** Minimized by
$$
h^* = \text{Median}(y_1, y_2, ..., y_n).
$$
\n- **Squared loss:**
$$
L_{\text{sq}}(h, y) = (\underbrace{y - h})^2.
$$
\n- **b Empirical risk:**
$$
R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2.
$$
 Also called "mean squared error".
\n- **Minimized by**
$$
h^* = \text{Mean}(y_1, y_2, ..., y_n).
$$
\n

Discussion Question

Consider a dataset $y_1, y_2, ..., y_n$. Recall,

$$
R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|
$$

$$
R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2
$$

Is it true that, for any h , $[R_{abs}(h)]^2 = R_{sq}(h)$? a) True b) False $\frac{1}{n}\sum_{i=1}^{n}(y_i - h)^2$
R_{abs} $(h)]^2 = R_{sq}(h)$

Center and spread

What does it mean?

 \triangleright General form of empirical risk:

$$
S_{ij}^{n} = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)
$$

 $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ The input h^* that minimizes $R(h)$ is some measure of the **center** of the data set.

▶ e.g. median, mean, mode.

► The minimum output $R(h^*)$ represents some measure of the **spread**, or variation, in the data set.

Absolute loss

 \triangleright The empirical risk for the absolute loss is

$$
R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|
$$

► $R_{obs}(h)$ is minimized at h^* = Median($y_1, y_2, ..., y_n$).

 \triangleright Therefore, the minimum value of $R_{abs}(h)$ is

re, the minimum value of
$$
R_{abs}(h)
$$
 is
\n
$$
\frac{R_{abs}(h^*)}{\frac{1}{n} \sum_{i=1}^{n} |y_i - \text{Median}(y_1, y_2, ..., y_n)|}.
$$

Mean absolute deviation from the median

▶ The minimium value of $R_{obs}(h)$ **is the mean absolute deviation from the median**. **absolute deviati**

ie minimium value of *l*
 i
 i
 i
 $\frac{1}{n} \sum_{i=1}^{n} |y_i - y_i|$ e <mark>median</mark>
mean absolu
contract

e deviation from the mec
\nIn value of
$$
R_{abs}(h)
$$
 is the mean at
\n**m the median**.
\n
$$
\frac{1}{n} \sum_{i=1}^{n} |y_i - \underline{Median}(y_1, y_2, ..., y_n)|
$$
\nnow far each data point is from t

 \blacktriangleright It measures how far each data point is from the median, on average. medium-3

Mean absolute deviation from the median

Squared loss

 \triangleright The empirical risk for the squared loss is

$$
R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2
$$

► $R_{\rm sq}(h)$ is minimized at h^* = Mean($y_1, y_2, ..., y_n$).

▶ Therefore, the minimum value of $R_{sa}(h)$ **is**

SS
\nrical risk for the squared loss is
\n
$$
R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2
$$
\nminimized at $h^* = \text{Mean}(y_1, y_2, ..., y_n)$.
\n
$$
R_{sq}(h^*) = R_{sq}(\text{Mean}(y_1, y_2, ..., y_n))
$$
\n
$$
= \frac{1}{n} \sum_{i=1}^{n} (y_i - \text{Mean}(y_1, y_2, ..., y_n))^2.
$$

Variance

▶ The minimium value of $R_{\rm sn}(h)$ is the mean squared deviation from the mean, more commonly known as the **variance**.

$$
\frac{1}{n} \sum_{i=1}^{n} (y_i - \text{Mean}(y_1, y_2, ..., y_n))^2
$$

- \blacktriangleright It measures the squared distance of each data point from the mean, on average.
- ▶ Its square root is called the **standard deviation.**

Variance

0-1 loss

 \triangleright The empirical risk for the 0-1 loss is

$$
R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}
$$

- \triangleright This is the proportion (between 0 and 1) of data points not equal to ℎ.
- ► $R_{0,1}(h)$ is minimized at h^* = Mode($y_1, y_2, ..., y_n$).
- ▶ Therefore, $R_{0,1}(h^*)$ is the proportion of data points not equal to the mode.

A poor way to measure spread

- ▶ The minimium value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- \blacktriangleright A higher value means less of the data is clustered at the mode.
- \blacktriangleright Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

Summary of center and spread

- \triangleright Different loss functions lead to empirical risk functions that are minimized at various measures of **center**.
- \triangleright The minimum values of these risk functions are various measures of **spread**.
- ▶ There are many different ways to measure both center and spread. These are sometimes called **descriptive statistics**.

A new loss function

Plotting a loss function

- \triangleright The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{\text{abs}}(h, y) = |y h|$: \blacktriangleright

Plotting a loss function

- The plot of a loss function tells us how it treats outliers. \blacktriangleright
- Consider y to be some fixed value. Plot $L_{sq}(h, y) = (y h)^2$: \blacktriangleright

Discussion Question

Suppose L considers all outliers to be equally bad. What would it look like far away from y?

A very insensitive loss

▶ We'll call this loss L_{ucsd} because we made it up at UCSD.

Discussion Question

Which of these could be $L_{ucsd}(h, y)$?

Adding a scale parameter

- **dding a scale parameter**
 Example 19 Footen: L_{ucsd} has a fixed scale. This won't work for all datasets.
	- \blacktriangleright If we're predicting temperature, and we're off by 100 degrees, that's bad.
	- \blacktriangleright If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
	- \triangleright What we consider to be an outlier depends on the scale of the data.
- \blacktriangleright Fix: add a **scale parameter**, σ :

$$
L_{ucsd}(h,y) = 1 - e^{-(y-h)^2/g^2}
$$

Scale parameter controls width of bowl

Empirical risk minimization

 \blacktriangleright We have salaries $y_1, y_2, ..., y_n$. \triangleright To find η prediction, ERM says to minimize the average loss: optimal

ies
$$
y_1, y_2, ..., y_n
$$
.
\ntion, ERM says to minimize the
\n
$$
R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{ucsd}(h, y_i)
$$
\n
$$
= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right]
$$

Let's plot R_{ucsd}

 \triangleright Recall:

$$
R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right]
$$

- ▶ Once we have data $y_1, y_2, ..., y_n$ and a scale σ , we can plot $R_{used}(h)$.
- \blacktriangleright Let's try several scales, σ , for the data scientist salary data.

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Plot of $R_{ucsd}(h)$

Minimizing

- ► To find the best prediction, we find h^* minimizing $R_{ucsd}(h)$. $R_{ucsd}(h)$.
- \triangleright R_{ucsd}(h) is **differentiable**. **imizing** R_{ucsd}
To find the best predict
 $R_{ucsd}(h)$ is differentiabl
To minimize: take deriv
- ▶ To minimize: take derivative, set to zero, solve.

Step 1: Taking the derivative

$$
\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \right)
$$

Step 2: Setting to zero and solving

 \blacktriangleright We found:

ting to zero and solving
\n:
\n
$$
\frac{d}{dh}R_{ucsd}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2/\sigma^2}
$$
\n
$$
u = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2/\sigma^2}
$$

▶ Now we just set to zero and solve for ℎ:

$$
0 = \frac{2}{n\sigma^2} \sum_{i=1}^n (\underline{h} - y_i) \cdot e^{-(\underline{h} - y_i)^2/\sigma^2}
$$

▶ We **can** calculate derivative, but we **can't** solve for ℎ; we're stuck again.

Summary

- \triangleright Different loss functions lead to empirical risk functions that are minimized at various measures of **center**.
- \blacktriangleright The minimum values of these empirical risk functions are various measures of **spread**.
- \triangleright We came up with a more complicated loss function, L_{used} , that treats all outliers equally.
	- \triangleright We weren't able to minimize its empirical risk R_{used} by hand.
- ▶ **Next Time:** We'll learn a computational tool to approximate the minimizer of R_{ucsd} .