
Module 5 – Gradient Descent

DSC 40A, Summer 2023

Agenda

▶ Brief recap of Module 4.

▶ Gradient descent fundamentals.

Empirical risk minimization

The recipe
Suppose we’re given a dataset, 𝑦1, 𝑦2, ..., 𝑦𝑛 and want to
determine the best future prediction ℎ∗.
1. Choose a loss function 𝐿(ℎ, 𝑦) that measures how far our
prediction ℎ is from the “right answer” 𝑦.
▶ Absolute loss, 𝐿𝑎𝑏𝑠(ℎ, 𝑦) = |𝑦 − ℎ|.

▶ Squared loss, 𝐿𝑠𝑞(ℎ, 𝑦) = (𝑦 − ℎ)2.

2. Find ℎ∗ by minimizing the average of our chosen loss
function over the entire dataset.
▶ “Empirical risk” is just another name for average loss.

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦)

A very insensitive loss

▶ Last time, we introduced a new loss function, 𝐿𝑢𝑐𝑠𝑑 , with
the property that it (roughly) penalizes all bad predictions
the same.
▶ A prediction that is off by 50 has approximately the
same loss as a prediction that is of by 500.

▶ The effect: 𝐿𝑢𝑐𝑠𝑑 is not as sensitive to outliers.

A very insensitive loss
▶ The formula for 𝐿𝑢𝑐𝑠𝑑 is as follows (no need to memorize):

𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)
2/𝜎2

▶ The shape (and formula) come from an upside-down
bell curve.

▶ 𝐿𝑢𝑐𝑠𝑑 contains a scale parameter, 𝜎.
▶ Nothing to do with variance or standard deviation.

▶ Accounts for the fact that different datasets have
different thresholds for what counts as an outlier.

▶ Like a knob that you get to turn – the larger 𝜎 is, the
more sensitive 𝐿𝑢𝑐𝑠𝑑 is to outliers (and the more
smooth 𝑅𝑢𝑐𝑠𝑑 is).

Minimizing 𝑅𝑢𝑐𝑠𝑑

▶ The corresponding empirical risk, 𝑅𝑢𝑐𝑠𝑑 , is

𝑅𝑢𝑐𝑠𝑑(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]

▶ 𝑅𝑢𝑐𝑠𝑑 is differentiable.

▶ To minimize: take derivative, set to zero, solve.

Step 2: Setting to zero and solving

▶ We found:

𝑑
𝑑ℎ𝑅𝑢𝑐𝑠𝑑(ℎ) =

2
𝑛𝜎2

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)

2/𝜎2

▶ Now we just set to zero and solve for ℎ:

0 = 2
𝑛𝜎2

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)

2/𝜎2

▶ We can calculate derivative, but we can’t solve for ℎ; we’re
stuck again.

Gradient descent fundamentals

The general problem

▶ Given: a differentiable function 𝑅(ℎ).

▶ Goal: find the input ℎ∗ that minimizes 𝑅(ℎ).

Meaning of the derivative

▶ We’re trying to minimize a differentiable function 𝑅(ℎ). Is
calculating the derivative helpful?

▶ 𝑑𝑅
𝑑ℎ (ℎ) is a function; it gives the slope at ℎ.

Key idea behind gradient descent

▶ If the slope of 𝑅 at ℎ is positive then moving to the left
decreases the value of 𝑅.

▶ i.e., we should decrease ℎ.

Key idea behind gradient descent

▶ If the slope of 𝑅 at ℎ is negative then moving to the right
decreases the value of 𝑅.

▶ i.e., we should increase ℎ.

Key idea behind gradient descent

▶ Pick a starting place, ℎ0. Where do we go next?

▶ Slope at ℎ0 negative? Then increase ℎ0.

▶ Slope at ℎ0 positive? Then decrease ℎ0.

Key idea behind gradient descent

▶ Pick a starting place, ℎ0. Where do we go next?

▶ Slope at ℎ0 negative? Then increase ℎ0.

▶ Slope at ℎ0 positive? Then decrease ℎ0.

▶ Something like this will work:

ℎ1 = ℎ0 −
𝑑𝑅
𝑑ℎ (ℎ0)

Gradient Descent
▶ Pick 𝛼 to be a positive number. It is the learning rate, also
known as the step size.

▶ Pick a starting prediction, ℎ0.

▶ On step 𝑖, perform update ℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅
𝑑𝑅
𝑑ℎ (ℎ𝑖−1)

▶ Repeat until convergence (when ℎ doesn’t change much).
Alternative criteria: magnitude of gradient is close to
zero; validation error stops improving.

Gradient Descent

Note: it’s called gradient descent because the gradient is the
generalization of the derivative for multivariable functions.

Example: Minimizing mean squared error

▶ Recall the mean squared error and its derivative:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

𝑑𝑅sq
𝑑ℎ (ℎ) = 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)

Discussion Question

Consider the dataset −4, −2, 2, 4. Pick ℎ0 = 4 and 𝛼 =
1
4 .

Find ℎ1.

a) -1
b) 0
c) 1
d) 2

Solution

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

𝑑𝑅sq
𝑑ℎ (ℎ) = 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)

Consider the dataset −4, −2, 2, 4. Pick ℎ0 = 4 and 𝛼 =
1
4 . Find ℎ1.

Summary

▶ Gradient descent is a general tool used to minimize
differentiable functions.
▶ We will usually use it to minimize empirical risk, but
it can minimize other functions, too.

▶ Gradient descent progressively updates our guess for ℎ∗
according to the update rule

ℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅ (
𝑑𝑅
𝑑ℎ (ℎ𝑖−1)) .

▶ Next Time: We’ll demonstrate gradient descent in a
Jupyter notebook. We’ll learn when this procedure works
well and when it doesn’t.

