Module 5 - Gradient Descent

DSC 40A, Summer 2023



Agenda

Brief recap of Module 4.

Gradient descent fundamentals.



Empirical risk minimization



The recipe

Suppose we're given a dataset, y., ,, .., ¥, and want to
determine the best future prediction h*.

C@W L(h, y) that measures how far our
prediction h is from the “right answer” y.
Absolute loss, L_, (h,y) = |y - h|.
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Squared loss, L., (h,y) = (y - h)2.

Find h* by minimizing the average of our chosen loss
function over the entire dataset.

“Empirical risk” is just another name for average loss.
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A very insensitive loss

Last time, we introduced a new loss function, L, .4, with
the property that it (roughly) penalizes all bad predictions
the same.

A prediction that is off by 50 has approximately the
same loss as a prediction that is of by 500.

The effect: L, is not as sensitive to outliers.
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A very insensitive loss
The formula for L .., is as follows (no need to memorize):

(V2 [ 2
Lucsd(hry)=1_e(y h)/_?’

The shape (and formula) come from an upside-down
bell curve.

|
L,csq CONtains a scale parameter, 0. < C""j'}iv

Nothing to do with variance or standard deviation.

Accounts for the fact that different datasets have
different thresholds for what counts as an outlier.

Like a knob that you get to turn — the larger o is, the
more sensitive L, ., is to outliers (and the more
smooth R, ., is).



Minimizing R __,

The corresponding empirical risk, R, .4, is

n
Rucsd(h) = % Z [’I - e—(yi—h)zloz]
i=1

R,.s4 is differentiable.

To minimize: take derivative, set to zero, solve.



Step 2: Setting to zero and solving

We found:
d 2 < “(h-v2 /2
dh ucsd = " ho? Z LR
i=1
Now we just set to zero and solve for h:

2 i ~(h-y;? |0
— > (h-y,)- eV
02 '

We can calculate derivative, but we can’t solve for h; we're
stuck again.



Gradient descent fundamentals
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The general problem
Given: a differentiable function R(h).

Goal: find the input h* that minimizes R(h).

@UQ



Meaning of the derivative

We're trying to minimize a differentiable function R(h). Is
calculating the derivative helpful?

Z—Z(h) is a function; it gives the slope at h.
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Key idea behind gradient descent

If the slope of R at h is positive then moving to the left
decreases the value of R.

i.e., we should decrease h.
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Key idea behind gradient descent

If the slope of R at h is negative then moving to the right
decreases the value of R.

i.e., we should increase h.
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Key idea behind gradient descent
Pick a starting place, h,. Where do we go next?
In\ﬂ"v\u‘ "O‘ALS$

Slope at h, negative? Then increase h,,.

Slope at h,, positive? Then decrease h,,.



Key idea behind gradient descent

Pick a starting place, h,. Where do we go next?
Slope at h, negative? Then increase h,,.
Slope at h,, positive? Then decrease h,,.

Something like this will work:

dR
h’l = hO - %(ho)
/r\
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Gradient Descent

Pick a to be a positive number. It is the learning rate, also
known as the step size.

Pick a starting prediction, h,. /AM;’ “ff”'w
On step i, perform update h; = h,_, dh(h )

Repeat until convergence (when h doesn’t change much).
Alternative criteria: magnitude of gradient is close to
zero; validation error stops improving.




Gradient Descent
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def gradient_descent(derivative, h, alpha, tol=1e-12):

Minimize using gradient descent.

wiale drue:
h_next = h - alpﬁg/:’sgzivative(h)
if abs(h_next - h) < tol:
break {
h = h_next
~—————
return h
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Note: it's called gradient descent because the gradient is the
generalization of the derivative for multivariable functions.



Example: Minimizing mean squared error

Recall the mean squared error and its derivative:

1 n , dR sq 2 n
hy=—2 (v;-h) hy==3 (h-y)

i=1 i=1

Discussion Question

Consider the dataset -4,-2,2,4. Pick h, = 4 and a = %
Find h,. —_—




Solution

dR n
sq 2 _
= (h) = H;m )

R = = (v, - hY?
i=1

Consider the dataset -4,-2,2, 4. Pick hy = 4 and a = 1. Find h,.
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Summary

Gradient descent is a general tool used to minimize
differentiable functions.
We will usually use it to minimize empirical risk, but
it can minimize other functions, too.

Gradient descent progressively updates our guess for h*
according to the update rule

h=hyy-a(9Ben ).

Next Time: We'll demonstrate gradient descent in a
Jupyter notebook. We'll learn when this procedure works
well and when it doesn't.



