Module 5 - Gradient Descent

DSC 40A, Summer 2023

Agenda

- Brief recap of Module 4.
- Gradient descent fundamentals.

Empirical risk minimization

The recipe

Suppose we're given a dataset, $y_{1}, y_{2}, \ldots, y_{n}$ and want to determine the best future prediction h^{*}.

1. Choose a loss function $L(h, y)$ that measures how far our prediction h is from the "right answer" y.

- Absolute loss, $L_{a b s}(h, y)=|y-h|$.

Squared loss, $L_{s q}(h, y)=(y-h)^{2}$.
2. Find h^{*} by minimizing the average of our chosen loss function over the entire dataset.

- "Empirical risk" is just another name for average loss.

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L(h, y)
$$

A very insensitive loss

$>$ Last time, we introduced a new loss function, $L_{\text {ucsd }}$, with the property that it (roughly) penalizes all bad predictions the same.

- A prediction that is off by 50 has approximately the same loss as a prediction that is of by 500 .
\Rightarrow The effect: $L_{u c s d}$ is not as sensitive to outliers.

A very insensitive loss

- The formula for $L_{\text {ucsd }}$ is as follows (no need to memorize):

$$
L_{u c s d}(h, y)=1-e^{-(y-h)^{2} / \sigma^{2}}
$$

- The shape (and formula) come from an upside-down bell curve.
$-L_{\text {ucsd }}$ contains a scale parameter, $\sigma . \in$ control $\begin{gathered}\text { widh } \\ \text { did }\end{gathered}$
\downarrow Nothing to do with variance or standard deviation.
- Accounts for the fact that different datasets have different thresholds for what counts as an outlier.
- Like a knob that you get to turn - the larger σ is, the more sensitive $L_{\text {ucsd }}$ is to outliers (and the more smooth $R_{\text {ucsd }}$ is).

Minimizing $R_{\text {ucsd }}$

- The corresponding empirical risk, $R_{\text {ucsd }}$, is

$$
R_{u c s d}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]
$$

- $R_{u c s d}$ is differentiable.
- To minimize: take derivative, set to zero, solve.

Step 2: Setting to zero and solving

- We found:

$$
\frac{d}{d h} R_{u c s d}(h)=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}
$$

- Now we just set to zero and solve for h :

$$
0=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}
$$

- We can calculate derivative, but we can't solve for h; we're stuck again.

Gradient descent fundamentals
other reasons to use

- Computational complexity

The general problem

- Given: a differentiable function $R(h)$.
- Goal: find the input h^{*} that minimizes $R(h)$.

Meaning of the derivative

- We're trying to minimize a differentiable function $R(h)$. Is calculating the derivative helpful?
$\frac{d R}{d h}(h)$ is a function; it gives the slope at h.

Key idea behind gradient descent

- If the slope of R at h is positive then moving to the left decreases the value of R.
- i.e., we should decrease h.

Key idea behind gradient descent

\Rightarrow If the slope of R at h is negative then moving to the right decreases the value of R.

- i.e., we should increase h.

Key idea behind gradient descent

- Pick a starting place, h_{0}. Where do we go next?
\Rightarrow Slope at h_{0} negative? Then increase h_{0}.
- Slope at h_{0} positive? Then decrease h_{0}.

Key idea behind gradient descent
Pick a starting place, h_{0}. Where do we go next?
Slope at h_{0} negative? Then increase h_{0}.
Slope at h_{0} positive? Then decrease h_{0}.
Something like this will work:

$$
h_{1}=h_{0}-\frac{d R}{d h}\left(h_{0}\right)
$$

init ${ }^{\uparrow}$ slope of old pretiodn

Gradient Descent

\Rightarrow Pick α to be a positive number. It is the learning rate, also known as the step size.
\Rightarrow Pick a starting prediction, h_{0}.

- On step i, perform update $h_{i}=h_{i-1}-\underline{\alpha} \cdot \frac{d R}{d h}\left(h_{i-1}\right)$ - - adaptive
- Repeat until convergence (when h doesn't change much). Alternative criteria: magnitude of gradient is close to zero; validation error stops improving.
bigger a yields bluer spas

Gradient Descent

```
                itype: callable
def gradient_descent(derivative, h, alpha, tol=1e-12):
    """Minimize using gradient descent.
while True:
    h_next = h - alpha * derivative(h)
    if abs(h_next - h) < tol:
                break?
    return h
```

Note: it's called gradient descent because the gradient is the generalization of the derivative for multivariable functions.

Example: Minimizing mean squared error

- Recall the mean squared error and its derivative:

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2} \quad \frac{d R_{\mathrm{sq}}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Discussion Question

Consider the dataset $-4,-2,2,4$. Pick $h_{0}=4$ and $\alpha=\frac{1}{4}$. Find h_{1}.
a) -1
b) 0
c) 1
d) 2

Solution

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2} \quad \frac{d R_{\mathrm{sq}}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Consider the dataset $-4,-2,2,4$. Pick $h_{0}=4$ and $\alpha=\frac{1}{4}$. Find h_{1}.

$$
\begin{aligned}
& h_{i}=h_{i-1}-\alpha \frac{\frac{d R}{d h}\left(h_{i-1}\right)}{\frac{2}{4}}((4+4)+(4+2)+(4-2)+ \\
&\left.\frac{2}{4}(8-4)+6+2+0\right) \\
& \frac{2}{4}(16) \\
& 4-\frac{1}{4} \cdot 8=(2)^{\frac{32}{4}=8}
\end{aligned}
$$

Summary

- Gradient descent is a general tool used to minimize differentiable functions.
- We will usually use it to minimize empirical risk, but it can minimize other functions, too.
- Gradient descent progressively updates our guess for h^{*} according to the update rule

$$
h_{i}=h_{i-1}-\alpha \cdot\left(\frac{d R}{d h}\left(h_{i-1}\right)\right) .
$$

- Next Time: We'll demonstrate gradient descent in a Jupyter notebook. We'll learn when this procedure works well and when it doesn't.

