
Module 5 – Gradient Descent
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Agenda▶ Brief recap of Module 4.▶ Gradient descent fundamentals.



Empirical risk minimization



The recipe
Suppose we’re given a dataset, 𝑦1, 𝑦2, ..., 𝑦𝑛 and want to
determine the best future prediction ℎ∗.
1. Choose a loss function 𝐿(ℎ, 𝑦) that measures how far our
prediction ℎ is from the “right answer” 𝑦.▶ Absolute loss, 𝐿𝑎𝑏𝑠(ℎ, 𝑦) = |𝑦 − ℎ|.▶ Squared loss, 𝐿𝑠𝑞(ℎ, 𝑦) = (𝑦 − ℎ)2.

2. Find ℎ∗ by minimizing the average of our chosen loss
function over the entire dataset.▶ “Empirical risk” is just another name for average loss.𝑅(ℎ) = 1𝑛 𝑛∑𝑖=1 𝐿(ℎ, 𝑦)
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A very insensitive loss▶ Last time, we introduced a new loss function, 𝐿𝑢𝑐𝑠𝑑 , with
the property that it (roughly) penalizes all bad predictions
the same.▶ A prediction that is off by 50 has approximately the

same loss as a prediction that is of by 500.▶ The effect: 𝐿𝑢𝑐𝑠𝑑 is not as sensitive to outliers.



A very insensitive loss▶ The formula for 𝐿𝑢𝑐𝑠𝑑 is as follows (no need to memorize):𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)2/𝜎2▶ The shape (and formula) come from an upside-down
bell curve.▶ 𝐿𝑢𝑐𝑠𝑑 contains a scale parameter, 𝜎.▶ Nothing to do with variance or standard deviation.▶ Accounts for the fact that different datasets have
different thresholds for what counts as an outlier.▶ Like a knob that you get to turn – the larger 𝜎 is, the
more sensitive 𝐿𝑢𝑐𝑠𝑑 is to outliers (and the more
smooth 𝑅𝑢𝑐𝑠𝑑 is).
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Minimizing 𝑅𝑢𝑐𝑠𝑑
▶ The corresponding empirical risk, 𝑅𝑢𝑐𝑠𝑑 , is𝑅𝑢𝑐𝑠𝑑(ℎ) = 1𝑛 𝑛∑𝑖=1 [1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]▶ 𝑅𝑢𝑐𝑠𝑑 is differentiable.▶ To minimize: take derivative, set to zero, solve.



Step 2: Setting to zero and solving▶ We found: 𝑑𝑑ℎ𝑅𝑢𝑐𝑠𝑑(ℎ) = 2𝑛𝜎2 𝑛∑𝑖=1 (ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)2/𝜎2▶ Now we just set to zero and solve for ℎ:0 = 2𝑛𝜎2 𝑛∑𝑖=1 (ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)2/𝜎2▶ We can calculate derivative, but we can’t solve for ℎ; we’re
stuck again.



Gradient descent fundamentals

other reasons.He suplexin



The general problem▶ Given: a differentiable function 𝑅(ℎ).▶ Goal: find the input ℎ∗ that minimizes 𝑅(ℎ).
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Meaning of the derivative▶ We’re trying to minimize a differentiable function 𝑅(ℎ). Is
calculating the derivative helpful?▶ 𝑑𝑅𝑑ℎ (ℎ) is a function; it gives the slope at ℎ.
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Key idea behind gradient descent▶ If the slope of 𝑅 at ℎ is positive then moving to the left
decreases the value of 𝑅.▶ i.e., we should decrease ℎ.
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Key idea behind gradient descent▶ If the slope of 𝑅 at ℎ is negative then moving to the right
decreases the value of 𝑅.▶ i.e., we should increase ℎ.
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Key idea behind gradient descent▶ Pick a starting place, ℎ0. Where do we go next?▶ Slope at ℎ0 negative? Then increase ℎ0.▶ Slope at ℎ0 positive? Then decrease ℎ0.
W
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Key idea behind gradient descent▶ Pick a starting place, ℎ0. Where do we go next?▶ Slope at ℎ0 negative? Then increase ℎ0.▶ Slope at ℎ0 positive? Then decrease ℎ0.▶ Something like this will work:ℎ1 = ℎ0 − 𝑑𝑅𝑑ℎ (ℎ0)-
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Gradient Descent▶ Pick 𝛼 to be a positive number. It is the learning rate, also
known as the step size.▶ Pick a starting prediction, ℎ0.▶ On step 𝑖, perform update ℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅ 𝑑𝑅𝑑ℎ (ℎ𝑖−1)▶ Repeat until convergence (when ℎ doesn’t change much).
Alternative criteria: magnitude of gradient is close to
zero; validation error stops improving.
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Gradient Descent

Note: it’s called gradient descent because the gradient is the
generalization of the derivative for multivariable functions.

stype:collable
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Example: Minimizing mean squared error▶ Recall the mean squared error and its derivative:𝑅sq(ℎ) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2 𝑑𝑅sq𝑑ℎ (ℎ) = 2𝑛 𝑛∑𝑖=1 (ℎ − 𝑦𝑖)
Discussion Question

Consider the dataset −4, −2, 2, 4. Pick ℎ0 = 4 and 𝛼 = 14 .
Find ℎ1.
a) -1
b) 0
c) 1
d) 2
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Solution

𝑅sq(ℎ) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2 𝑑𝑅sq𝑑ℎ (ℎ) = 2𝑛 𝑛∑𝑖=1 (ℎ − 𝑦𝑖)
Consider the dataset −4, −2, 2, 4. Pick ℎ0 = 4 and 𝛼 = 14 . Find ℎ1.
hi =hi. -21)

=4

z((y +4) +4 +2 +(y-2+
( - ())

Y(8 +6 +2+0)

-(16)
4 - 4.8

=
2 =
8



Summary▶ Gradient descent is a general tool used to minimize
differentiable functions.▶ We will usually use it to minimize empirical risk, but

it can minimize other functions, too.▶ Gradient descent progressively updates our guess for ℎ∗
according to the update ruleℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅ (𝑑𝑅𝑑ℎ (ℎ𝑖−1)) .▶ Next Time: We’ll demonstrate gradient descent in a
Jupyter notebook. We’ll learn when this procedure works
well and when it doesn’t.


