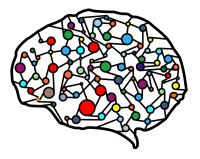
Module 6 - Gradient Descent in Action



DSC 40A, Summer 2023

Agenda

- Brief recap of Module 5.
- Gradient descent demo.
- When is gradient descent guaranteed to work?

Gradient descent fundamentals

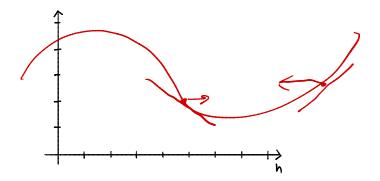
The general problem

Given: a differentiable function *R*(*h*).

Goal: find the input *h*^{*} that minimizes *R*(*h*).

Key idea behind gradient descent

- ▶ If the slope of *R* at *h* is **positive** then we'll **decrease** *h*.
- ▶ If the slope of *R* at *h* is **negative** then we'll **increase** *h*.



Gradient descent

- Pick a positive constant, α , for the learning rate.
- Pick a starting prediction, h_0 .
- Repeatedly apply the gradient descent update rule.

$$h_i = h_{i-1} - \alpha \cdot \frac{dR}{dh}(h_{i-1})$$

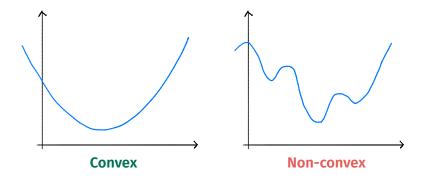
Repeat until convergence (when h doesn't change much). Ly or validution loss not on improving in other close to some smill walke

Gradient descent demo

Let's see gradient descent in action. Follow along here.

When is gradient descent guaranteed to work?

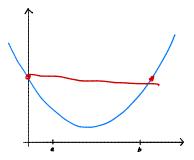
Convex functions



Convexity: Definition

- f is convex if for every a, b in the domain of f, the line segment between
 - (a, f(a)) and (b, f(b))

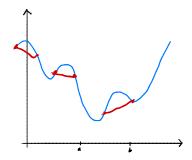
does not go below the plot of f.



Convexity: Definition

- f is convex if for every a, b in the domain of f, the line segment between
 - (a, f(a)) and (b, f(b))

does not go below the plot of f.



Discussion Question

Which of these functions is not convex? a) f(x) = |x|b) $f(x) = e^x$ c) $f(x) = \sqrt{x-1}$ d) $f(x) = (x-3)^{24}$

Why does convexity matter?

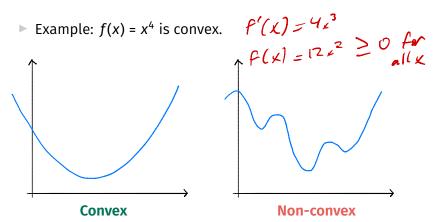
- Convex functions are (relatively) easy to minimize with gradient descent.
- Theorem: if R(h) is convex and differentiable then gradient descent converges to a global minimum of R provided that the step size is small enough.
- ► Why?
 - If a function is convex and has a local minimum, that local minimum must be a global minimum.
 - In other words, gradient descent won't get stuck/terminate in local minimums that aren't global minimums.

Nonconvexity and gradient descent

- We say a function is nonconvex if it does not meet the criteria for convexity.
- Nonconvex functions are (relatively) hard to minimize.
- Gradient descent can still be useful, but it's not guaranteed to converge to a global minimum.
 - We saw this when trying to minimize R_{ucsd}(h) with a smaller σ.

Second derivative test for convexity - note: Not on

- If f(x) is a function of a single variable and is twice differentiable, then:
- ► f(x) is convex if and only if $\frac{d^2f}{dx^2}(x) \ge 0$ for all x.



Convexity of empirical risk

▶ If *L*(*h*, *y*) is a convex function (when *y* is fixed) then

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

is convex.

More generally, sums of convex functions are convex.

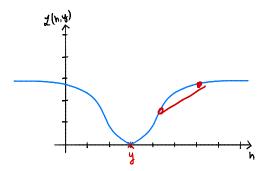
- What does this mean?
 - If a loss function is convex, then the corresponding empirical risk will also be convex.

Convexity of loss functions

► Is
$$L_{sq}(h, y) = (y - h)^2$$
 convex? Yes or No.

► Is
$$L_{abs}(h, y) = |y - h|$$
 convex? Yes or No.

► Is $L_{ucsd}(h, y)$ convex? Yes or No.



Convexity of R_{ucsd}

- A function can be convex in a region.
- If σ is large, R_{ucsd}(h) is convex in a big region around data.
 A large σ led to a very smooth, parabolic-looking
 - empirical risk function with a single local minimum (which was a global minimum).
- ► If σ is small, $R_{ucsd}(h)$ is convex in only small regions.
 - A small σ led to a very bumpy empirical risk function with many local minimums.

Discussion Question

Recall the empirical risk for absolute loss,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

Is *R_{abs}(h)* **convex**? Is gradient descent guaranteed to find a global minimum, given an appropriate step size?

Summary

Summary

- Gradient descent is a general tool used to minimize differentiable functions.
- Convex functions are (relatively) easy to optimize with gradient descent.
- We like convex loss functions, such as the squared loss and absolute loss, because the corresponding empirical risk functions are also convex.

What's next?

So far, we've been predicting future values (salary, for instance) without using any information about the individual.

► GPA.

 $(\lambda_1 - 4i)$

▶ Years of experience.

Number of LinkedIn connections.

Major.

How do we incorporate this information into our prediction-making process?