Module 7 - Linear Prediction Rules

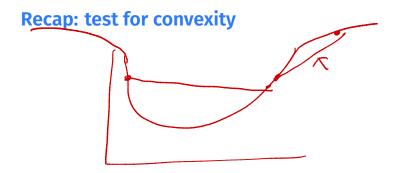
DSC 40A, Summer 2023

Announcements

- Homework 1 is due **tomorrow at 11:59pm**.
- We will release solutions on Campuswire after slip deadline.

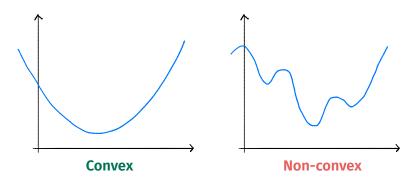
Agenda

- Recap of convexity.
- Prediction rules.
- Minimizing mean squared error, again.



Second derivative test for convexity

- If f(x) is a function of a single variable and is twice differentiable, then:
- ► f(x) is convex if and only if $\frac{d^2f}{dx^2}(x) \ge 0$ for all x.
- Example: $f(x) = x^4$ is convex.



Convexity and gradient descent

Theorem: if R(h) is convex and differentiable then gradient descent converges to a global minimum of R provided that the step size is small enough.

- If a function is convex and has a local minimum, that local minimum must be a global minimum.
- In other words, gradient descent won't get stuck/terminate in local minimums that aren't global minimums.
- For nonconvex functions, gradient descent can still be useful, but it's not guaranteed to converge to a global minimum.

Convexity of empirical risk

▶ If *L*(*h*, *y*) is a convex function (when *y* is fixed) then

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

is convex.

More generally, sums of convex functions are convex.

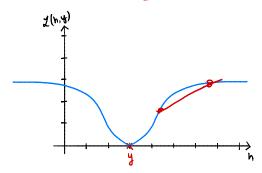
- What does this mean?
 - If a loss function is convex, then the corresponding empirical risk will also be convex.

Convexity of loss functions

► Is
$$L_{sq}(h, y) = (y - h)^2$$
 convex? Yes or No.

Is
$$L_{abs}(h, y) = |y - h|$$
 convex? Yes or No.

Is L_{ucsd}(h, y) convex? Yes or 10



Convexity of R_{ucsd}

- A function can be convex in a region.
- If σ is large, R_{ucsd}(h) is convex in a big region around data.
 A large σ led to a very smooth, parabolic-looking
 - empirical risk function with a single local minimum (which was a global minimum).
- ► If σ is small, $R_{ucsd}(h)$ is convex in only small regions.
 - A small σ led to a very bumpy empirical risk function with many local minimums.

Discussion Question

Recall the empirical risk for absolute loss,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

Is *R_{abs}(h)* **convex**? Is gradient descent **guaranteed** to find a global minimum, given an appropriate step size?

- a) YES convex, YES guaranteed
- b) YES convex, NOT guaranteed
- c) NOT convex, YES guaranteed
- d) NOT convex, NOT guaranteed

Prediction rules

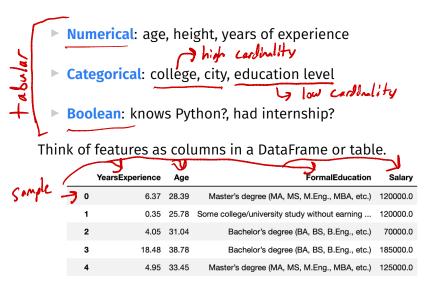
How do we predict someone's salary?

After collecting salary data, we...

- 1. Choose a loss function.
- 2. Find the best prediction by minimizing the average loss across the entire data set (empirical risk).
- So far, we've been predicting future salaries without using any information about the individual (e.g. GPA, years of experience, number of LinkedIn connections).
- New focus: How do we incorporate this information into our prediction-making process?

Features

A feature is an attribute – a piece of information.



Variables

- The features, x, that we base our predictions on are called predictor variables.
- redictor variant. The <u>quantity</u>, y, that we're trying to predict based on these features is called the <u>response variable</u>. *aka "target" these features of "begedet awde.* The quantity, y, that we're trying to predict based on
- We'll start by predicting salary based on years of

Prediction rules

- ▶ We believe that salary is a function of experience.
- In other words, we think that there is a function H such that:

salary \approx *H*(years of experience)

H is called a hypothesis function or prediction rule.
H is called a hypothesis function or prediction rule.

う

• **Our goal**: find a good prediction rule, *H*.

Possible prediction rules prodicted salars 1'nor H_1 (years of experience) = \$50,000 + \$2,000 × (years of experience) et y H_2 (years of experience) = \$60,000 × $1.05^{(years of experience)}$ H_3 (years of experience) = \$100,000 - \$5,000 × (years of experience) Tincar

- These are all valid prediction rules.
- Some are better than others.

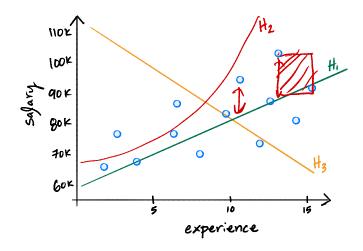
Comparing predictions

- How do we know which prediction rule is best: H_1 , H_2 , H_3 ?
- We gather data from n people. Let x_i be experience, y_i be salary:

$$\begin{array}{cccc} (\text{Experience}_1, \text{Salary}_1) & (x_1, y_1) \\ (\text{Experience}_2, \text{Salary}_2) & (x_2, y_2) \\ & & & & \\ (\text{Experience}_n, \text{Salary}_n) & (x_n, y_n) \end{array}$$

See which rule works better on data.

Example



Quantifying the quality of a prediction rule H

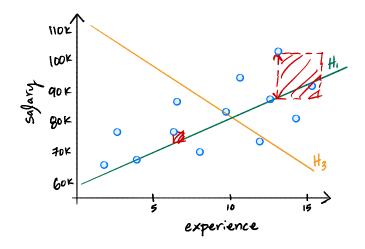
- Our prediction for person *i*'s salary is $H(x_i)$.
- As before, we'll use a loss function to quantify the quality of our predictions.
 - Absolute loss: $|y_i H(x_i)|$.

Squared loss:
$$(y_i - H(x_i))^2$$
.

- ▶ We'll focus on squared loss, since it's differentiable.
- Using squared loss, the empirical risk (mean squared error) of the prediction rule H is:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \underline{H(x_i)})^2$$

Mean squared error



Finding the best prediction rule

- ▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
- That is, H* should be the function that minimizes

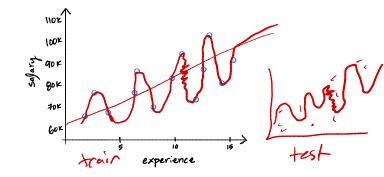
$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

Discussion Question

Given the data below, is there a prediction rule *H* which has **zero** mean squared error?

b) No

a) Yes



Problem

- ▶ We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- ▶ Don't allow *H* to be just any function.
- Require that it has a certain form. **Common interpretation surprisingly performant Examples: Example: Harrow: Constant: H**(x) = w₀ + w₁x + w₂x². **Exponential: H**(x) = w₀ · w_1x . **Exponential: H**(x) = w₀. **H**(x) = w₀. **H**(

Finding the best linear prediction rule

▶ **Goal:** out of all **linear** functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.

Linear functions are of the form $H(x) = w_0 + w_1 x_1$

• They are defined by a slope (w_1) and intercept (w_0) .

That is, H* should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- This problem is called linear regression.
 - Simple linear regression refers to linear regression with a single predictor variable, x.

Minimizing mean squared error for the linear prediction rule

Minimizing the mean squared error

• The MSE is a function R_{sq} of a function *H*.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Now R_{sq} is a function of w_0 and w_1 .

- We call w_0 and w_1 parameters.
 - Parameters define our prediction rule.

Updated goal

Find the slope w_1^* and intercept w_0^* that minimize the MSE, $R_{sq}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: multivariable calculus.

Recall: the gradient

If f(x, y) is a function of two variables, the gradient of f at the point (x₀, y₀) is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \vdots \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

- Key Fact #1: The derivative is to the tangent line as the gradient is to the tangent plane.
- Key Fact #2: The gradient points in the direction of the biggest increase.
- **Key Fact #3**: The gradient is zero at critical points.

Minimizing multivariable functions

- From calculus, to optimize a multivariable differentiable function:
 - 1. Calculate the gradient vector, or vector of partial derivatives.
 - 2. Set the gradient equal to to 0 (that is, the zero vector).
 - 3. Solve the resulting system of equations.

$$\nabla \varphi(x_{0}, y_{0}) = \frac{d \varphi}{d x} (x_{0}, y_{0}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example

Discussion Question

Find the point at which the function

$$f(x,y) = x^2 + y^2 - 2x - 4y$$

is minimized.

 $\frac{\partial F}{\partial x} = \begin{bmatrix} 2x-2\\ 0 \end{bmatrix}$ $= \begin{bmatrix} 0\\ 0 \end{bmatrix}$ $\frac{\partial f}{\partial y} = \begin{bmatrix} 2y-4\\ 0 \end{bmatrix}$

Summary

Summary, next time

▶ We introduced the linear prediction rule, $H(x) = w_0 + w_1 x$.

To determine the best linear prediction rule, we'll use the squared loss and choose the one that minimizes the empirical risk, or mean squared error:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

- Next time: We'll use calculus to minimize the mean squared error and find the best linear prediction rule.
 - Spoiler alert: it's the regression line, as many of you saw in DSC 10.