
Module 7 – Linear Prediction Rules

DSC 40A, Summer 2023



Announcements▶ Homework 1 is due tomorrow at 11:59pm.▶ We will release solutions on Campuswire after slip
deadline.



Agenda▶ Recap of convexity.▶ Prediction rules.▶ Minimizing mean squared error, again.



Recap: test for convexity
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Second derivative test for convexity▶ If 𝑓(𝑥) is a function of a single variable and is twice
differentiable, then:▶ 𝑓(𝑥) is convex if and only if 𝑑2𝑓𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥.▶ Example: 𝑓(𝑥) = 𝑥4 is convex.

Convex Non-convex
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Convexity and gradient descent▶ Theorem: if 𝑅(ℎ) is convex and differentiable then
gradient descent converges to a global minimum of 𝑅
provided that the step size is small enough.▶ If a function is convex and has a local minimum, that

local minimum must be a global minimum.▶ In other words, gradient descent won’t get
stuck/terminate in local minimums that aren’t global
minimums.▶ For nonconvex functions, gradient descent can still be

useful, but it’s not guaranteed to converge to a global
minimum.
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Convexity of empirical risk▶ If 𝐿(ℎ, 𝑦) is a convex function (when 𝑦 is fixed) then𝑅(ℎ) = 1𝑛 𝑛∑𝑖=1 𝐿(ℎ, 𝑦𝑖)
is convex.▶ More generally, sums of convex functions are convex.▶ What does this mean?▶ If a loss function is convex, then the corresponding

empirical risk will also be convex.
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Convexity of loss functions▶ Is 𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2 convex? Yes or No.▶ Is 𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ| convex? Yes or No.▶ Is 𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) convex? Yes or No.
↳
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Convexity of 𝑅𝑢𝑐𝑠𝑑▶ A function can be convex in a region.▶ If 𝜎 is large, 𝑅𝑢𝑐𝑠𝑑(ℎ) is convex in a big region around data.▶ A large 𝜎 led to a very smooth, parabolic-looking
empirical risk function with a single local minimum
(which was a global minimum).▶ If 𝜎 is small, 𝑅𝑢𝑐𝑠𝑑(ℎ) is convex in only small regions.▶ A small 𝜎 led to a very bumpy empirical risk function
with many local minimums.



Discussion Question

Recall the empirical risk for absolute loss,𝑅𝑎𝑏𝑠(ℎ) = 1𝑛 𝑛∑𝑖=1 |𝑦𝑖 − ℎ|
Is𝑅𝑎𝑏𝑠(ℎ) convex? Is gradient descent guaranteed to find
a global minimum, given an appropriate step size?

a) YES convex, YES guaranteed
b) YES convex, NOT guaranteed
c) NOT convex, YES guaranteed
d) NOT convex, NOT guaranteed



Prediction rules



How do we predict someone’s salary?
After collecting salary data, we...
1. Choose a loss function.

2. Find the best prediction by minimizing the average loss
across the entire data set (empirical risk).▶ So far, we’ve been predicting future salaries without using
any information about the individual (e.g. GPA, years of
experience, number of LinkedIn connections).▶ New focus: How do we incorporate this information into
our prediction-making process?
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Features
A feature is an attribute – a piece of information.▶ Numerical: age, height, years of experience▶ Categorical: college, city, education level▶ Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame or table.
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Variables▶ The features, 𝑥, that we base our predictions on are called
predictor variables.▶ The quantity, 𝑦, that we’re trying to predict based on
these features is called the response variable.▶ We’ll start by predicting salary based on years of
experience.
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Prediction rules▶ We believe that salary is a function of experience.▶ In other words, we think that there is a function 𝐻 such
that:

salary ≈ 𝐻(years of experience)▶ 𝐻 is called a hypothesis function or prediction rule.▶ Our goal: find a good prediction rule, 𝐻.
I
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Possible prediction rules

𝐻1(years of experience) = $50,000 + $2, 000 × (years of experience)𝐻2(years of experience) = $60,000 × 1.05(years of experience)𝐻3(years of experience) = $100,000 − $5,000 × (years of experience)
▶ These are all valid prediction rules.▶ Some are better than others.
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Comparing predictions▶ How do we know which prediction rule is best: 𝐻1, 𝐻2, 𝐻3?▶ We gather data from 𝑛 people. Let 𝑥𝑖 be experience, 𝑦𝑖 be
salary:

(Experience1, Salary1)
(Experience2, Salary2)...
(Experience𝑛, Salary𝑛) → (𝑥1, 𝑦1)(𝑥2, 𝑦2)...(𝑥𝑛, 𝑦𝑛)▶ See which rule works better on data.



Example

·



Quantifying the quality of a prediction rule 𝐻▶ Our prediction for person 𝑖’s salary is 𝐻(𝑥𝑖).▶ As before, we’ll use a loss function to quantify the quality
of our predictions.▶ Absolute loss: |𝑦𝑖 − 𝐻(𝑥𝑖)|.▶ Squared loss: (𝑦𝑖 − 𝐻(𝑥𝑖))2.▶ We’ll focus on squared loss, since it’s differentiable.▶ Using squared loss, the empirical risk (mean squared
error) of the prediction rule 𝐻 is:𝑅𝑠𝑞(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2
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Mean squared error
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Finding the best prediction rule▶ Goal: out of all functions ℝ → ℝ, find the function 𝐻∗ with
the smallest mean squared error.▶ That is, 𝐻∗ should be the function that minimizes𝑅𝑠𝑞(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2



Discussion Question

Given the data below, is there a prediction rule 𝐻 which
has zero mean squared error?

a) Yes b) No0
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Problem▶ We can make mean squared error very small, even zero!▶ But the function will be weird.▶ This is called overfitting.▶ Remember our real goal: make good predictions on data
we haven’t seen.
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Solution▶ Don’t allow 𝐻 to be just any function.▶ Require that it has a certain form.▶ Examples:▶ Linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.▶ Quadratic: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2.▶ Exponential: 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 .▶ Constant: 𝐻(𝑥) = 𝑤0.
7 commen, interpretater surprisingly performant

mos
is

-

-
no X



Finding the best linear prediction rule▶ Goal: out of all linear functions ℝ → ℝ, find the function𝐻∗ with the smallest mean squared error.▶ Linear functions are of the form 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.▶ They are defined by a slope (𝑤1) and intercept (𝑤0).▶ That is, 𝐻∗ should be the linear function that minimizes𝑅𝑠𝑞(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2▶ This problem is called linear regression.▶ Simple linear regression refers to linear regression
with a single predictor variable, 𝑥.
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Minimizing mean squared error for the linear
prediction rule



Minimizing the mean squared error▶ The MSE is a function 𝑅sq of a function 𝐻.𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2▶ But since 𝐻 is linear, we know 𝐻(𝑥𝑖) = 𝑤0 + 𝑤1𝑥𝑖.𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ Now 𝑅𝑠𝑞 is a function of 𝑤0 and 𝑤1.▶ We call 𝑤0 and 𝑤1 parameters.▶ Parameters define our prediction rule.
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Updated goal▶ Find the slope 𝑤∗1 and intercept 𝑤∗0 that minimize the MSE,𝑅sq(𝑤0, 𝑤1):𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ Strategy: multivariable calculus.



Recall: the gradient▶ If 𝑓(𝑥, 𝑦) is a function of two variables, the gradient of 𝑓 at
the point (𝑥0, 𝑦0) is a vector of partial derivatives:∇𝑓(𝑥0, 𝑦0) = (𝜕𝑓𝜕𝑥 (𝑥0, 𝑦0)𝜕𝑓𝜕𝑦 (𝑥0, 𝑦0))▶ Key Fact #1: The derivative is to the tangent line as the
gradient is to the tangent plane.▶ Key Fact #2: The gradient points in the direction of the
biggest increase.▶ Key Fact #3: The gradient is zero at critical points.
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Minimizing multivariable functions▶ From calculus, to optimize a multivariable differentiable
function:
1. Calculate the gradient vector, or vector of partial
derivatives.

2. Set the gradient equal to to 0 (that is, the zero
vector).

3. Solve the resulting system of equations.
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Example

Discussion Question

Find the point at which the function𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 2𝑥 − 4𝑦
is minimized.
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Summary



Summary, next time▶ We introduced the linear prediction rule, 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.▶ To determine the best linear prediction rule, we’ll use the
squared loss and choose the one that minimizes the
empirical risk, or mean squared error:𝑅𝑠𝑞(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ Next time: We’ll use calculus to minimize the mean
squared error and find the best linear prediction rule.▶ Spoiler alert: it’s the regression line, as many of you

saw in DSC 10.


