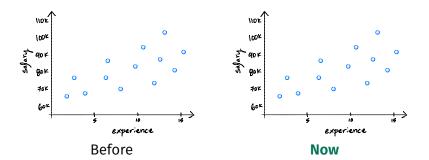
Module 8 - Simple Linear Regression

DSC 40A, Summer 2023

Agenda


- ▶ Recap of Module 7.
- Minimizing mean squared error for the linear prediction rule.
- Connection with correlation.

Recap of Module 7

Linear prediction rules

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a prediction rule H(x) that uses features, i.e. information about individuals, to make predictions.
- We decided to use a **linear** prediction rule, which is of the form $H(x) = w_0 + w_1 x$.

 \blacktriangleright w₀ and w₁ are called **parameters**.

Finding the best linear prediction rule

In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.

We chose squared loss, (y_i - H(x_i))², as our loss function.

• The MSE is a function R_{sq} of a function *H*.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Finding the best linear prediction rule

Goal: Find the slope w₁^{*} and intercept w₀^{*} that minimize the MSE, R_{sq}(w₀, w₁):

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: To minimize R(w₀, w₁), compute the gradient (vector of partial derivatives), set it equal to zero, and solve.

Minimizing mean squared error for the linear prediction rule

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Discussion Question

Choose the expression that equals
$$\frac{\partial R_{sq}}{\partial w_0}$$

a)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$

b) $-\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$
c) $-\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i$
d) $-\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$

$$\begin{split} R_{\rm sq}(w_0,w_1) &= \frac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i) \right)^2 \\ \frac{\partial R_{\rm sq}}{\partial w_0} &= \end{split}$$

$$\begin{split} R_{\rm sq}(w_0,w_1) &= \frac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i) \right)^2 \\ \frac{\partial R_{\rm sq}}{\partial w_1} &= \end{split}$$

Strategy

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

1. Solve for w_0 in first equation.

• The result becomes w_0^* , since it is the "best intercept".

2. Plug w_0^* into second equation, solve for w_1 .

• The result becomes w_1^* , since it is the "best slope".

Solve for w_0^*

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0$$

Solve for w_1^*

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0$$

Least squares solutions

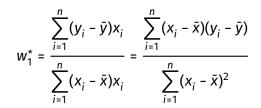
► We've found that the values w_0^* and w_1^* that minimize the function $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$ are

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

• Let's re-write the slope w_1^* to be a bit more symmetric.

Key fact


The sum of deviations from the mean for any dataset is 0.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

Proof:

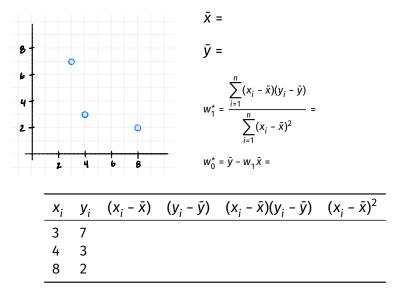
Equivalent formula for w_1^*

Claim

Proof:

Least squares solutions

The least squares solutions for the slope w₁^{*} and intercept w₀^{*} are:

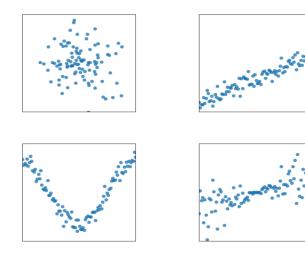

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \qquad w_0^* = \bar{y} - w_1 \bar{x}$$

• We also say that w_0^* and w_1^* are **optimal parameters**.

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

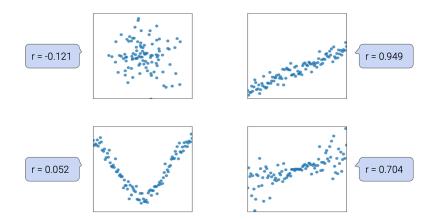
Example


Terminology

- ► x: features.
- *y*: response variable.
- \blacktriangleright w₀, w₁: parameters.
- \blacktriangleright w_0^* , w_1^* : optimal parameters.
 - Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".

►
$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$
: mean squared error,
empirical risk.

Connection with correlation


Patterns in scatter plots

Correlation coefficient

- ▶ In DSC 10, you were introduced to the idea of correlation.
 - It is a measure of the strength of the linear association of two variables, x and y.
 - Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
 - It ranges between -1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
 - Let σ_x be the standard deviation of the x_i 's, and \bar{x} be the mean of the x_i 's.

•
$$x_i$$
 in standard units is $\frac{x_i - \bar{x}}{\sigma_x}$.

The correlation coefficient is

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$

Another way to express W_1^*

It turns out that w₁^{*}, the optimal slope for the linear prediction rule, can be written in terms of r!

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = r\frac{\sigma_{y}}{\sigma_{x}}$$

- It's not surprising that r is related to w₁^{*}, since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$