## Module 8 - Simple Linear Regression



**DSC 40A, Summer 2023** 

## Agenda

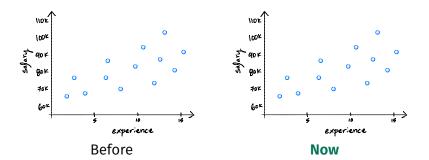
- ▶ Recap of Module 7.
- Minimizing mean squared error for the linear prediction rule.
- Connection with correlation.

Recap of Module 7

# **Linear prediction rules**

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a prediction rule H(x) that uses features, i.e. information about individuals, to make predictions.
- We decided to use a **linear** prediction rule, which is of the form  $H(x) = w_0 + w_1 x$ .

 $\blacktriangleright$  w<sub>0</sub> and w<sub>1</sub> are called **parameters**.



# Finding the best linear prediction rule

In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.

We chose squared loss, (y<sub>i</sub> - H(x<sub>i</sub>))<sup>2</sup>, as our loss function.

• The MSE is a function  $R_{sq}$  of a function *H*.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know  $H(x_i) = w_0 + w_1 x_i$ .

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

## Finding the best linear prediction rule

Goal: Find the slope w<sub>1</sub><sup>\*</sup> and intercept w<sub>0</sub><sup>\*</sup> that minimize the MSE, R<sub>sq</sub>(w<sub>0</sub>, w<sub>1</sub>):

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: To minimize R(w<sub>0</sub>, w<sub>1</sub>), compute the gradient (vector of partial derivatives), set it equal to zero, and solve.

# Minimizing mean squared error for the linear prediction rule

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

#### **Discussion Question**

Choose the expression that equals 
$$\frac{\partial R_{sq}}{\partial w_0}$$

a) 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$
  
b)  $-\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$   
c)  $-\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i$   
d)  $-\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$ 

$$\begin{split} R_{\rm sq}(w_0,w_1) &= \frac{1}{n} \sum_{i=1}^n \left( y_i - (w_0 + w_1 x_i) \right)^2 \\ \frac{\partial R_{\rm sq}}{\partial w_0} &= \end{split}$$

$$\begin{split} R_{\rm sq}(w_0,w_1) &= \frac{1}{n} \sum_{i=1}^n \left( y_i - (w_0 + w_1 x_i) \right)^2 \\ \frac{\partial R_{\rm sq}}{\partial w_1} &= \end{split}$$

## Strategy

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

1. Solve for  $w_0$  in first equation.

• The result becomes  $w_0^*$ , since it is the "best intercept".

#### 2. Plug $w_0^*$ into second equation, solve for $w_1$ .

• The result becomes  $w_1^*$ , since it is the "best slope".

# Solve for $w_0^*$

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0$$

# Solve for $w_1^*$

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0$$

## Least squares solutions

► We've found that the values  $w_0^*$  and  $w_1^*$  that minimize the function  $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$  are

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ 

• Let's re-write the slope  $w_1^*$  to be a bit more symmetric.

## Key fact

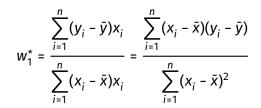
#### The sum of deviations from the mean for any dataset is 0.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

Proof:

# Equivalent formula for $w_1^*$

Claim



Proof:

## Least squares solutions

The least squares solutions for the slope w<sub>1</sub><sup>\*</sup> and intercept w<sub>0</sub><sup>\*</sup> are:

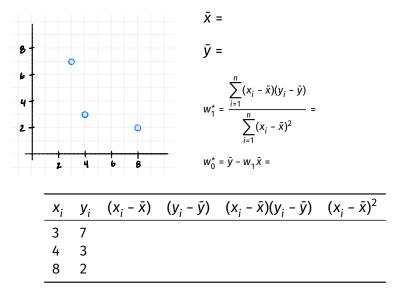
$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \qquad w_0^* = \bar{y} - w_1 \bar{x}$$

• We also say that  $w_0^*$  and  $w_1^*$  are **optimal parameters**.

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

## Example



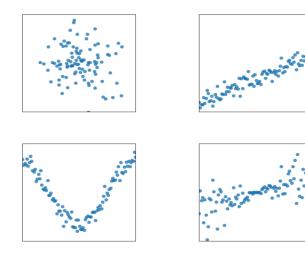
# Terminology

- ► x: features.
- *y*: response variable.
- $\blacktriangleright$  w<sub>0</sub>, w<sub>1</sub>: parameters.
- $\blacktriangleright$   $w_0^*$ ,  $w_1^*$ : optimal parameters.
  - Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".

► 
$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$
: mean squared error,  
empirical risk.

# **Connection with correlation**

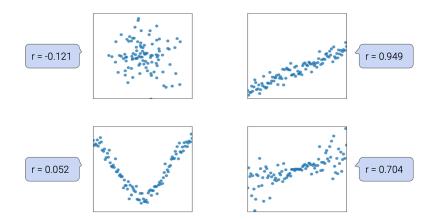
# Patterns in scatter plots



## **Correlation coefficient**

- ▶ In DSC 10, you were introduced to the idea of correlation.
  - It is a measure of the strength of the linear association of two variables, x and y.
  - Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
  - It ranges between -1 and 1.

## Patterns in scatter plots



## **Definition of correlation coefficient**

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
  - Let  $\sigma_x$  be the standard deviation of the  $x_i$ 's, and  $\bar{x}$  be the mean of the  $x_i$ 's.

• 
$$x_i$$
 in standard units is  $\frac{x_i - \bar{x}}{\sigma_x}$ .

The correlation coefficient is

$$r = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{x_i - \bar{x}}{\sigma_x} \right) \left( \frac{y_i - \bar{y}}{\sigma_y} \right)$$

## Another way to express $W_1^*$

It turns out that w<sub>1</sub><sup>\*</sup>, the optimal slope for the linear prediction rule, can be written in terms of r!

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = r\frac{\sigma_{y}}{\sigma_{x}}$$

- It's not surprising that r is related to w<sub>1</sub><sup>\*</sup>, since r is a measure of linear association.
- Concise way of writing  $w_0^*$  and  $w_1^*$ :

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$