Module 8 - Simple Linear Regression

DSC 40A, Summer 2023

Agenda

- Recap of Module 7.
- Minimizing mean squared error for the linear prediction rule.
- Connection with correlation.

Recap of Module 7

Linear prediction rules

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a prediction rule $H(x)$ that uses features, ie. information about individuals, to make predictions.
\Rightarrow We decided to use a linear prediction rule, which is of the form $H(x)=w_{0}+w_{1} x$.
${ }^{\nabla} w_{0}$ and w_{1} are called parameters.

Before

Finding the best linear prediction rule

- In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.

We chose squared loss, $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$, as our loss
function.
\Rightarrow The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

\Rightarrow But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Finding the best linear prediction rule

- Goal: Find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

> Strategy: To minimize $R\left(w_{0}, w_{1}\right)$, compute the gradient (vector of partial derivatives), set it equal to zero, and solve.

Minimizing mean squared error for the linear prediction rule

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{\text {sq }}}{\partial w_{0}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

$$
\begin{aligned}
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
\frac{\partial R_{s q}}{\partial w_{0}}= & \frac{1}{n} \sum_{i=1}^{n} \frac{d R_{s q}}{d_{w_{0}}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{\prime} \cdot-1 \\
& \frac{-2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
R_{s q}\left(w_{0}, w_{1}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
\frac{\partial R_{s q}}{\partial w_{1}} & =\frac{1}{n} \sum_{i=1}^{n} \frac{d R_{s 0}}{d w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\left(w_{0}+w_{i} x_{i}\right)\right)^{\prime} \cdot x_{i} \\
& =-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \cdot x_{i}
\end{aligned}
$$

Strategy

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

1. Solve for w_{0} in first equation.

- The result becomes w_{0}^{*}, since it is the "best intercept".

2. Plug w_{0}^{*} into second equation, solve for w_{1}.
\Rightarrow The result becomes w_{1}^{*}, since it is the "best slope".

Solve for w_{0}^{*}

$$
\begin{aligned}
& -\frac{n}{2} \cdot-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 .-\frac{n}{2} \\
& \sum_{i=1}^{n}\left(y_{i}-\left(\omega_{0}+\omega_{1} x_{i}\right)\right)=0 \quad \omega_{0}^{4}=\bar{y}-\omega_{1} \bar{x} \\
& \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)=0 \\
& \sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} w_{0}-\sum_{i=1}^{n} w_{1} x_{i}=0 \\
& n \cdot w_{0}=\sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} w_{1} x_{i} \\
& w_{0}=\frac{1}{n} \underbrace{\sum_{i=1} y_{i}-w_{1} \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i}}_{\pi_{\operatorname{men} x} y} \underbrace{}_{=\operatorname{man} x}
\end{aligned}
$$

Solve for w_{1}^{*}

$$
\begin{aligned}
& \text { Solve for } w_{1}^{*} \\
& \begin{array}{l}
2 / 2 \\
\sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0 \quad w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \\
\sum_{i=1}^{n}\left(y_{i}-\left(\left(\bar{y}-w_{i} \bar{x}\right)+w_{1} x_{i}\right)\right) x_{i}=0 \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}+w_{1} \bar{x}-w_{1} x_{i}\right) x_{i}=0 \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}-\sum_{i=1}^{n} w_{1}\left(x_{i}-\bar{y}\right) x_{i}=0 \\
\quad w_{1}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}\right.
\end{array}
\end{aligned}
$$

Least squares solutions

\Rightarrow We've found that the values w_{0}^{*} and w_{1}^{*} that minimize the function $R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$ are

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Let's re-write the slope w_{1}^{*} to be a bit more symmetric.

Key fact
The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}-\sum_{i=6}^{n} \bar{x} \\
& n \cdot \bar{x}-n \cdot \bar{x} \\
& =0
\end{aligned}
$$

Equivalent formula for w_{1}^{*}
Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof:

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \rightarrow \sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}\right) \underbrace{\bar{x}\left(y_{i}-\bar{y}\right)}
$$

Least squares solutions

- The least squares solutions for the slope w_{1}^{*} and intercept w_{0}^{*} are:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We also say that w_{0}^{*} and w_{1}^{*} are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{*}+w_{1}^{*} x
$$

Example

$$
\begin{aligned}
& \bar{x}=5 \\
& \bar{y}=Y \\
& w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=-\frac{11}{14} \\
& w_{0}^{*}=\bar{y}-w_{1} \bar{x}=\quad 4-\frac{-11}{14} \cdot 5
\end{aligned}
$$

	$~ 8$				
x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
3	7	-2	3	-6	4
4	3	-1	-1	1	1
8	2	3	-2	-6	9
				$-1($	14

Terminology

- x: features. years exp
y: response variable. Salary
${ }^{-} w_{0}, w_{1}$: parameters.
- w_{0}^{*}, w_{1}^{*} : optimal parameters.
\downarrow Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".
$\Rightarrow R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$: mean squared error, empirical risk.

Connection with correlation

Patterns in scatter plots

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
- It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between - 1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

> The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
\Rightarrow Let σ_{x} be the standard deviation of the x_{i} 's, and \bar{x} be the mean of the x_{i} 's.
x_{i} in standard units is $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.

- The correlation coefficient is

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

Another way to express w_{1}^{*}

- It turns out that w_{1}^{*}, the optimal slope for the linear prediction rule, can be written in terms of r !

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\underline{r} \frac{\sigma_{y}}{\sigma_{x}}
$$

- It's not surprising that r is related to w_{1}^{*}, since r is a measure of linear association.
- Concise way of writing w_{0}^{*} and w_{1}^{*} :

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

