Module 9 – Regression in Action and Linear Algebra Review

DSC 40A, Summer 2023

Agenda

- Recap of Module 8.
- Connection with correlation.
- Interpretation of formulas.
- Regression demo.
- Linear algebra review.

Recap of Module 8

The best linear prediction rule

Last time, we used multivariable calculus to find the slope w_1^* and intercept w_0^* that minimized the MSE for a linear prediction rule of the form

$$H(x) = W_0 + W_1 x$$

In other words, we minimized this function:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Optimal parameters

We found the optimal parameters to be:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$w_0^* = \bar{y} - w_1 \bar{x}$$

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

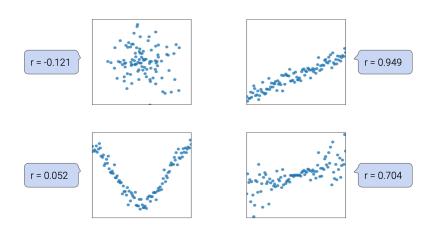
► This line is the **regression line**.

Connection with correlation

Correlation coefficient

- ▶ In DSC 10, you were introduced to the idea of correlation.
 - It is a measure of the strength of the **linear** association of two variables, x and y.
 - Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
 - It ranges between -1 and 1.

Patterns in scatter plots



Definition of correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
 - Let σ_x be the standard deviation of the x_i 's, and \bar{x} be the mean of the x_i 's.
 - $ightharpoonup x_i$ in standard units is $\frac{x_i \bar{x}}{\sigma_y}$.
 - ► The correlation coefficient is

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$

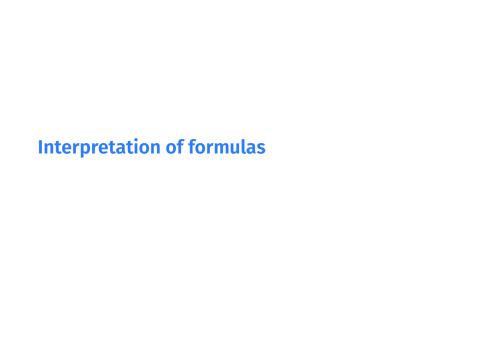
Another way to express W_1^*

It turns out that w_1^* , the optimal slope for the linear prediction rule, can be written in terms of r!

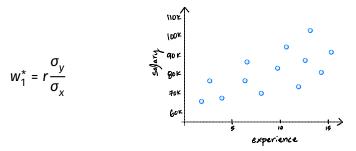
$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = r \frac{\sigma_{y}}{\sigma_{x}}$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- ► Concise way of writing w_0^* and w_1^* :

$$w_1^* = r \frac{\sigma_y}{\sigma_y}$$
 $w_0^* = \bar{y} - w_1^* \bar{x}$



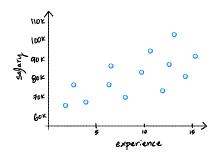
Interpreting the slope



- σ_y and σ_x are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, $\sigma_{\rm y}$ increases and so does the slope.
- As the x values get more spread out, σ_x increases and the slope decreases.

Interpreting the intercept

$$w_0^* = \bar{y} - w_1^* \bar{x}$$



▶ What is $H^*(\bar{x})$?

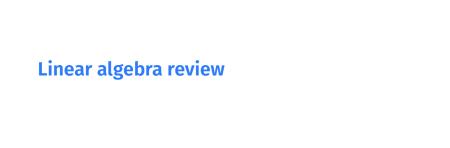
Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?

- a) slope increases, intercept increases
- b) slope decreases, intercept increases
- c) slope stays same, intercept increases
- d) slope stays same, intercept stays same

Regression demo

Let's see regression in action. Follow along here.	



Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
 - use multiple features.
 - are non-linear.
- ▶ Before we dive in, let's review.

Matrices

- An $m \times n$ matrix is a table of numbers with m rows and n columns.
- We use upper-case letters for matrices.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

 \triangleright A^T denotes the transpose of A:

$$A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Matrix addition and scalar multiplication

- ▶ We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 8 & 9 \\ -1 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 8 & 10 & 12 \\ 3 & 3 & 3 \end{bmatrix}$$

Scalar multiplication occurs elementwise, too:

$$2 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

Matrix-matrix multiplication

- We can multiply two matrices A and B only if # columns in A = # rows in B.
- If A is m × n and B is n × p, the result is m × p.
 This is very useful.
- The *ij* entry of the product is:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Some matrix properties

Multiplication is Distributive:

$$A(B+C) = AB + AC$$

Multiplication is Associative:

$$(AB)C = A(BC)$$

Multiplication is not commutative:

Transpose of sum:

$$(A+B)^T = A^T + B^T$$

Transpose of product:

$$(AB)^T = B^T A^T$$

Vectors

- An vector in \mathbb{R}^n is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$\vec{V} = \begin{bmatrix} 2 \\ 1 \\ 5 \\ -3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

A vector $\vec{v} = (v_1, ..., v_n)^T$ is an arrow to the point $(v_1, ..., v_n)$ from the origin.

► The **length**, or **norm**, of \vec{v} is $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$.

Dot products

The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is denoted by:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

Definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

► The result is a **scalar**!

Discussion Question

Which of these is another expression for the length of \vec{u} ?

- a) $\vec{u} \cdot \vec{u}$
- b) √<u>ǘ²</u>
- c) √**ū** · ū
- d) ជំ²