Module 9 - Regression in Action and Linear Algebra Review

DSC 40A, Summer 2023

Agenda

- Recap of Module 8.
- Connection with correlation.
- Interpretation of formulas.
- Regression demo.
- Linear algebra review.

Recap of Module 8

The best linear prediction rule

- Last time, we used multivariable calculus to find the slope w_{1}^{*} and intercept w_{0}^{*} that minimized the MSE for a linear prediction rule of the form

$$
H(x)=w_{0}+w_{1} x
$$

- In other words, we minimized this function:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Optimal parameters

- We found the optimal parameters to be:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{\star}+w_{1}^{\star} x
$$

$>$ This line is the regression line.

Connection with correlation

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
- It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between - 1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

> The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
\Rightarrow Let σ_{x} be the standard deviation of the x_{i} 's, and \bar{x} be the mean of the x_{i} 's.
x_{i} in standard units is $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.

- The correlation coefficient is

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

Another way to express w_{1}^{*}

- It turns out that w_{1}^{*}, the optimal slope for the linear prediction rule, can be written in terms of r !

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- It's not surprising that r is related to w_{1}^{*}, since r is a measure of linear association.
- Concise way of writing w_{0}^{*} and w_{1}^{*} :

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Interpretation of formulas

Interpreting the slope

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- σ_{y} and σ_{x} are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_{y} increases and so does the slope.
- As the x values get more spread out, σ_{x} increases and the slope decreases.

Interpreting the intercept

What is $H^{*}(\bar{x})$?
$H^{*}(\bar{x})=w_{0}^{\delta}+w_{1}^{0} \bar{x}$

$$
=\bar{y}-w_{1}^{d} \bar{x}+w_{1}^{d} \bar{x}
$$

$$
=\bar{Y}
$$

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?
a) slope increases, intercept increases
b) slope decreases, intercept increases
(C) Slope stays same, intercept increases
d) slope stays same, intercept stays same

Regression demo

Let's see regression in action. Follow along here.

Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
- use multiple features.
- are non-linear.
- Before we dive in, let's review.

Matrices

- An $m \times n$ matrix is a table of numbers with m rows and n columns.
- We use upper-case letters for matrices.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

- A^{T} denotes the transpose of A :

$$
A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Matrix addition and scalar multiplication

- We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+\left[\begin{array}{ccc}
7 & 8 & 9 \\
-1 & -2 & -3
\end{array}\right]=\left[\begin{array}{ccc}
8 & 10 & 12 \\
3 & 3 & 3
\end{array}\right]
$$

- Scalar multiplication occurs elementwise, too:

$$
2 \cdot\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
$$

Matrix-matrix multiplication

- We can multiply two matrices A and B only if \# columns in $A=\#$ rows in B.
- If A is $m \times n$ and B is $n \times p$, the result is $m \times p$. \Rightarrow This is very useful.
> The oj entry of the product is:

$$
\left[\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right] \quad\left[\begin{array}{c}
{\left[\begin{array}{c}
(A B)_{i j}= \\
x \\
x \\
x \\
x \\
x
\end{array}\right]=\sum_{k=1}^{n} A_{i k} B_{k j}} \\
3 \times 2
\end{array}=\left[\begin{array}{cc}
- & - \\
\square & - \\
- & -
\end{array}\right]\right.
$$

Some matrix properties

- Multiplication is Distributive:

$$
A(B+C)=A B+A C
$$

- Multiplication is Associative:

$$
(A B) C=A(B C)
$$

- Multiplication is not commutative:

$$
A B \neq B A
$$

- Transpose of sum:

$$
(A+B)^{T}=A^{T}+B^{T}
$$

- Transpose of product:

$$
(A B)^{T}=B^{T} A^{T}
$$

Vectors

- An vector in \mathbb{R}^{n} is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$
\vec{v}=\left[\begin{array}{c}
2 \\
1 \\
5 \\
-3
\end{array}\right]
$$

- Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

- A vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)^{T}$ is an arrow to the point $\left(v_{1}, \ldots, v_{n}\right)$ from the origin.

- The length, or norm, of \vec{v} is $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$.

Dot products

- The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is denoted by:

$$
\vec{u} \cdot \vec{v}=\vec{u}^{\top} \vec{v}
$$

- Definition:

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=\underline{u_{1} v_{1}}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

The result is a scalar!

Discussion Question
Which of these is another expression for the length of \vec{u} ?
a)
b)
c) $\sqrt{\vec{u} \cdot \vec{u}}$
d) \mathbb{E}^{2}

