Module 9 – Regression in Action and Linear Algebra Review

DSC 40A, Summer 2023

Agenda

- Recap of Module 8.
- Connection with correlation.
- Interpretation of formulas.
- Regression demo.
- Linear algebra review.

Recap of Module 8

The best linear prediction rule

Last time, we used multivariable calculus to find the slope w₁^{*} and intercept w₀^{*} that minimized the MSE for a linear prediction rule of the form

$$H(x) = w_0 + w_1 x$$

In other words, we minimized this function:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Optimal parameters

We found the optimal parameters to be:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \qquad w_0^* = \bar{y} - w_1 \bar{x}$$

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

► This line is the **regression line**.

Connection with correlation

Correlation coefficient

- ▶ In DSC 10, you were introduced to the idea of correlation.
 - It is a measure of the strength of the linear association of two variables, x and y.
 - Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
 - It ranges between -1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
 - Let σ_x be the standard deviation of the x_i 's, and \bar{x} be the mean of the x_i 's.

•
$$x_i$$
 in standard units is $\frac{x_i - \bar{x}}{\sigma_x}$.

The correlation coefficient is

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$

Another way to express W_1^*

It turns out that w₁^{*}, the optimal slope for the linear prediction rule, can be written in terms of r!

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = r\frac{\sigma_{y}}{\sigma_{x}}$$

- It's not surprising that r is related to w₁^{*}, since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

Interpretation of formulas

Interpreting the slope

- σ_y and σ_x are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_y increases and so does the slope.
- As the x values get more spread out, σ_x increases and the slope decreases.

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?

a) slope increases, intercept increases

b) slope decreases, intercept increases

c) slope stays same, intercept increases

d) slope stays same, intercept stays same

Regression demo

Let's see regression in action. Follow along here.

Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that

use multiple features.

are non-linear.

Before we dive in, let's review.

Matrices

- An m × n matrix is a table of numbers with m rows and n columns.
- ▶ We use upper-case letters for matrices.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

► A^T denotes the transpose of A:

$$A^{\mathsf{T}} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Matrix addition and scalar multiplication

- > We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 8 & 9 \\ -1 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 8 & 10 & 12 \\ 3 & 3 & 3 \end{bmatrix}$$

Scalar multiplication occurs elementwise, too:

$$2 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

Matrix-matrix multiplication

We can multiply two matrices A and B only if

columns in A = # rows in B.

- If A is m × n and B is n × p, the result is m × p.
 This is very useful.
- The *ij* entry of the product is:

Some matrix properties

Multiplication is Distributive:

A(B+C)=AB+AC

Multiplication is Associative:

(AB)C = A(BC)

Multiplication is not commutative:

AB ≠ BA

Transpose of sum:

$$(A+B)^T = A^T + B^T$$

Transpose of product:

 $(AB)^T = B^T A^T$

Vectors

- An vector in \mathbb{R}^n is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$\vec{v} = \begin{bmatrix} 2\\1\\5\\-3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

A vector $\vec{v} = (v_1, ..., v_n)^T$ is an arrow to the point $(v_1, ..., v_n)$ from the origin.

► The length, or norm, of \vec{v} is $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$.

Dot products

▶ The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is denoted by:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

Definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The result is a scalar!

