
DSC 40A - Homework 3
due Friday, October 25th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Homeworks are due to Gradescope by 11:59PM on the due date.

Homework will be evaluated not only on the correctness of your answers, but on your ability to present
your ideas clearly and logically. You should always explain and justify your conclusions, using sound
reasoning. Your goal should be to convince the reader of your assertions. If a question does not require
explanation, it will be explicitly stated.

Homework should be written up and turned in by each student individually. You may talk to other students
in the class about the problems and discuss solution strategies, but you should not share any written
communication and you should not check answers with classmates. You can tell someone how to do a
homework problem, but you cannot show them how to do it. We encourage you to type your solutions in
LATEX, using the Overleaf template on the course website.

For each problem you submit, you should cite your sources by including a list of names of other students
with whom you discussed the problem. Instructors do not need to be cited.

This homework will be graded out of 49 points. The point value and difficulty of each problem or sub-problem
is indicated by the number of avocados shown.

Note: For Problems 6, you’ll need to code your answers in Python. More detailed instructions are provided
in Problem 6. Note that to submit the homework, you’ll have to submit your answers in PDF to the
Homework 3 assignment on Gradescope, and submit your completed notebook hw03-code.ipynb to the
Homework 3, Problems 6(b) and 6(c) autograder on Gradescope.

Problem 1. Reflection and Feedback Form

Make sure to fill out this Reflection and Feedback Form, linked here, for two points on this homework!
This form is primarily for your benefit; research shows that reflecting and summarizing knowledge helps you
understand and remember it.

Problem 2. Streaming for Stardom

In the music industry, the highest-earning artists are often those who generate the most streams on platforms
like Spotify. Every time an artist releases a song, it collects streams as listeners engage with the track. For
this problem, we will say an artist “collected a stream” each time their song is played.

Suppose we have access to a dataset containing information about a random sample of 50 music artists. For
each artist, we have the number of streams their songs received in 2023, along with their revenue for that
year. In the 2023 dataset, the number of streams for all artists has a mean of 50 million and a standard
deviation of 15 million.

We minimize mean squared error to fit a linear hypothesis function,

H(x) = w0 + w1x,

to this dataset. We will use this hypothesis function to help other artists predict their 2023 revenue (in
millions of dollars) based on their number of streams x.

One of the artists in our 2023 dataset was Drake. Suppose that in 2023, he had 65 million streams and his
revenue was only $2 million, the smallest in our sample.
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In 2024, Drake signed a new record deal based on his performance. In 2024, he again collected 65 million
streams, but his revenue shot up to $10 million!

Suppose we create two linear hypothesis functions, one using the dataset from 2023 when Drake had a
revenue of $2 million, and another using the dataset from 2024 when Drake had a revenue of $10 million.
Assume that all other artists had the same number of streams and earned the same revenue in both datasets.
That is, only Drake’s data point is different between these two datasets.

Let H∗(x) be the linear hypothesis function fit on the 2023 dataset, where the optimal slope and intercept
fit on the first dataset (2023) are w∗

1 and w∗
0 , respectively (i.e. H∗(x) = w∗

0 +w∗
1x). Let H

′(x) be the linear
hypothesis function fit on the 2024 dataset, where the optimal slope and intercept fit on the second dataset
(2024) are w′

1 and w′
0, respectively (i.e. H ′(x) = w′

0 + w′
1x).

a) What is the difference between the new slope and the old slope? That is, what is w′
1 − w∗

1?
The answer you get should be a number with no variables.

Solution: Write your solution here.

b) Consider two other artists, The Weeknd and Taylor Swift, neither of whom were part of our
original sample of music artists in 23023in 2023. Suppose that in 2021, The Weeknd had 45 million
streams and Taylor had 100 million streams.

Both The Weeknd and Taylor want to use one of our linear hypothesis functions to predict their
revenue. Suppose they both first use H∗(x) to determine their predicted revenue as per the first rule
(when Drake had revenue of $2 million). Then, they both use H ′(x) to determine predicted revenue
as per the second rule (when Drake had revenue of $10 million).

Whose prediction changed more by switching from H∗(x) to H ′(x) – The Weeknd’s or Taylor’s?

Solution: Write your solution here.

c) In this problem, we’ll consider how our answer to part (b) might have been different if Drake
had fewer streams in both 2023 and 2024. Note you don’t have to actually calculate the new slopes
below, but given the information in the problem and the work you’ve already done, you should be
able to answer the questions and give brief justification.

Suppose Drake instead had 50 million streams in both 2023 and 2024. If his revenue increased from
2023 to 2024, and everyone else’s data stayed the same, which slope would be larger: H∗(x) or H ′(x)?

Solution: Write your solution here.

Suppose Drake instead had 30 million streams in both 2023 and 2024. If his revenue increased from
2023 to 2024, and everyone else’s data stayed the same, which slope would be larger: H∗(x) or H ′(x)?

Solution: Write your solution here.

Problem 3. Correlation Bounds

In both this class and DSC 10, you were told that the correlation coefficient, r, ranges between −1 and
1, where r = −1 implies a perfect negative linear association and r = 1 implies a perfect positive linear
association. However, you were never given a proof of the fact that −1 ≤ r ≤ 1.

Here, you will prove this fact, using linear algebra. Before proceeding, you’ll want to review slide 19 onwards
in Lecture 8. Remember to show your work all throughout!
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a) Determine the angle between the vectors a⃗ =

 5
−1
7

 and b⃗ =

−3
2
12

. Your answer should involve

the function cos−1 (you do not have to find the angle in terms of degrees or radians).

Solution: Write your solution here.

b) Let x⃗ =


x1

x2

...
xn

. We define the “mean-centered” version of x⃗ to be x⃗c =


x1 − x̄
x2 − x̄

...
xn − x̄

, where x̄ is the

mean of the components of x⃗.

The mean-centered version of y⃗, named y⃗c, is defined similarly. Express x⃗c · y⃗c using summation
notation.

Solution: Write your solution here.

c) Prove that:

r =
x⃗c · y⃗c

∥x⃗c∥∥y⃗c∥

Solution: Write your solution here.

d) Argue why the result in (c) implies that −1 ≤ r ≤ 1.

Hint: If you’re completely stuck on how to proceed, try to think about what the purpose of part (a) was
— it’s in some way related to this part.

Solution: Write your solution here.

Problem 4. Making Connections... and Projections

Suppose we have a dataset of n points, (x1, y1), (x2, y2), ..., (xn, yn). In Groupwork 3, we proved that the
optimal parameter m∗ that minimizes mean squared error for the hypothesis function H(x) = mt is:

m∗ =

n∑
i=1

tiyi

n∑
i=1

t2i

(There, we used the variable w instead of m; we’ve used m above to avoid conflicting with a different
definition of w below.)

In this problem, we’ll derive the same result using our knowledge of vector projections from Lectures 9 and
10, to start making the connections between linear algebra and empirical risk minimization more clear.

Moving forward, consider the dataset of two points, (2, 1) and (3, 2). We can store the x and y coordinates
of our two points in vectors, x⃗ and y⃗, as follows:
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x⃗ =

[
2
1

]
y⃗ =

[
3
2

]
a) Our goal is to find the vector in span(x⃗) that is closest to y. The answer is a vector of the

form wx⃗, where w ∈ R is some scalar. The w that we choose is one that minimizes the length, ∥e⃗∥ of
the error vector, e⃗:

e⃗ = y⃗ − wx⃗

What is w∗, the value w that minimizes ∥e⃗∥? In other words, what value of w minimizes projection
error? (Note that the vector projection of y⃗ onto span(x⃗) is not w∗, but w∗x⃗ — however, here we’re
just asking you for the value of w∗, and of course, to show your work).

Solution: Write your solution here.

b) What is the error vector, e⃗, you found in part (a), and what is its length, ∥e⃗∥?

Solution: Write your solution here.

c) The value of w∗ you found in part (a) should be equal to the value you find using the formula for

m∗. In general, the w∗ that minimizes ∥y⃗−wx⃗∥ is equal to m∗, the m that minimizes
1

n

n∑
i=1

(yi−mxi)
2.

Explain why this is the case.

Hint: ∥y⃗ − wx⃗∥ and
1

n

n∑
i=1

(yi −mxi)
2 are related, but not exactly the same.

Solution: Write your solution here.

In parts (a) through (c), we projected y⃗ onto the span of a single vector, x⃗. But in Lecture 10, we looked at
how to project a vector y⃗ onto the span of two or more vectors. Let’s explore that concept here.

d) Consider the vectors x⃗(1) and x⃗(2), defined as follows:

x⃗(1) =

[
0
3

]
, x⃗(2) =

[
5
23

]

Again, let y⃗ =

[
7
2

]
.

What is the vector projection of y⃗ onto span(x⃗(1), x⃗(2)) — that is, what vector in span(x⃗(1), x⃗(2)) is
closest to y⃗? Give your answer in the form of a vector.

Solution: Write your solution here.

e) Let h⃗ be your answer to the previous part. Find scalars w1 and w2 such that:

w1x⃗
(1) + w2x⃗

(2) = h⃗
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Solution: Write your solution here.

In Lecture 10 we expressed w1x⃗
(1) + w2x⃗

(2) as the matrix-vector product Xw⃗, where X =

 | |
x⃗(1) x⃗(2)

| |

 =[
0 5
3 23

]
and w =

[
w1

w2

]
. This allowed us to more efficiently solve for the values w1, w2, ..., wd that minimize

projection error when we have several spanning vectors, x⃗(1), x⃗(2), ..., x⃗(d). Moving forward we will use this
approach for multiple linear regression.

Problem 5. Sums of Residuals

Let’s start by recalling the idea of orthogonality from linear algebra. This will allow us to prove a powerful
result regarding linear regression, starting in part (b).

Two vectors are orthogonal if their dot product is 0, i.e. for a⃗, b⃗ ∈ Rn:

a⃗T b⃗ = 0 =⇒ a⃗, b⃗ are orthogonal

Orthogonality is a generalization of perpendicularity to multiple dimensions. (Two orthogonal vectors in 2D
meet at a right angle.)

Suppose we want to represent the fact that some vector b⃗ is orthogonal to many vectors a⃗1, a⃗2, ..., a⃗d all at
once. It turns out that we can do this by creating a new n× d matrix A whose columns are the vectors a⃗1,
a⃗2, ..., a⃗d, and writing AT b⃗ = 0.

For instance, suppose a⃗1 =

−2
4
8

, a⃗2 =

15
3

, and b⃗ =

 2
−1
1

. Then,
A =

−2 1
4 5
8 3

 =⇒ AT =

[
−2 4 8
1 5 3

]

Note that the product AT b⃗ involves taking the dot product of each row in AT with b⃗. If AT b⃗ is a vector of
all 0s, i.e. the 0 vector, then it is the case that b⃗ is orthogonal to each row of AT , and hence orthogonal to
each column of A.

(We will not use this fact in this class, but if AT b⃗ = 0, it also means that b⃗ is orthogonal to the column
space of A.)

a) In the example above, verify that b⃗ is orthogonal to the columns of A.

Solution: Write your solution here.

b) Suppose 1⃗ is a vector in Rn containing the value 1 for each element, i.e. 1⃗ =


1
1
...
1

.

For any other vector b⃗ =


b1
b2
...
bn

, what is the value of 1⃗T b⃗, i.e. what is the dot product of 1⃗ and b⃗?
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Your answer may involve a summation symbol. Explain what it means in words.

Hint: This subpart should not take much time, so let us know if you’re stuck on it. Try making up
an example b⃗ and see what 1⃗T b⃗ evaluates to, before generalizing your result to arbitrary b⃗.

Solution: Write your solution here.

c) Now, consider a multiple regression scenario where X is a n × (d + 1) matrix where the first

column is the all-ones column vector 1⃗ and each column of the remaining d columns is a feature vector
(this is also called a design matrix), y⃗ ∈ Rn is our vector of targets (i.e. response variable) we are
trying to fit, and w∗ ∈ Rd+1) is the optimal parameter vector. Our hypothesis is then

H(x⃗) = x⃗ · w⃗ =

d∑
j=0

x(j)wj = w0 + x(1)w1 + x(2)w2 + . . .+ x(d)wd,

where the parameter w0 corresponds to the intercept, and the mean squared error is

Rsq(w⃗) =
1

n
∥y⃗ −Xw⃗∥2.

Show that the error vector, y⃗ −Xw⃗∗, is orthogonal to the columns of X.

Hint: Again, this should not take very long. Start with the normal equations, XTXw⃗∗ = XT y⃗, use
the distributive property of matrix multiplication, and use what you learned in part (a).

Solution: Write your solution here.

d) We define the ith residual to be the difference between the actual and predicted values for
individual i in our data set. In other words, the ith residual ei is

ei = yi −H∗(x⃗i) = (y⃗ −Xw⃗∗)i

(Note that (y⃗ −Xw⃗∗)i is referring to element i of the vector y⃗ −Xw⃗∗. Also, we use the letter e for
residuals because residuals are also known as errors.)

Using what you learned in parts (a), (b), and (c), show that the residuals of a multiple linear
regression prediction rule with an intercept term sums to 0 , i.e. that

∑n
i=1 ei = 0.

Solution: Write your solution here.

e) Now suppose our multiple linear regression prediction rule

does not have an intercept term, i.e. that our prediction rule is of the form H(x⃗) = w1x
(1) +w2x

(2) +
...+ wdx

(d).

1. Is it still guaranteed that
∑n

i=1 ei = 0? Why or why not?

2. Is it still possible that
∑n

i=1 ei = 0? If you believe the answer is yes, come up with a simple
example where a prediction rule without an intercept has residuals that sum to 0. If you believe
the answer is no, state why.

Solution: Write your solution here.
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Problem 6. Least Absolute Deviation Regression

In lecture, we explored least squares regression, and defined it as the problem of finding the values of w0

(intercept) and w1 (slope) that minimize mean squared error:

Rsq(w0, w1) =
1

n

n∑
i=1

(yi − (w0 + w1xi))
2.

Notice that we used the squared loss function, (yi − (w0 + w1xi))
2 as our metric for deviation. What if we

used a different loss function instead?

In this problem, we are going to introduce another type of linear regression: least absolute deviation (LAD)
regression. We will define least absolute deviation regression in terms of the absolute loss function rather
than the squared loss function to measure how far away our predictions are from the data. That is, we will
try to instead minimize

Rabs(w0, w1) =
1

n

n∑
i=1

|yi − (w0 + w1xi)|

Since absolute value functions are not differentiable, we cannot just take the gradient of Rabs, set it equal
to zero, and solve for the values of w0 and w1, as we did to minimize Rsq. In order to generate the optimal
LAD regression line we are going to leverage a very useful theorem:

If you have a dataset with n data points in Rk, where k ≤ n, then one of the optimal LAD regression lines
must pass through k data points.

Notice that unlike with least squares regression, the LAD regression line may not be unique!

This theorem is useful to us because it allows us to adopt a very conceptually simple, albeit not very efficient,
strategy to compute an optimal LAD regression line. Since our data will be in R2, we will generate all possible
unique pairs of points and calculate the intercept w0 and slope w1 of the line between each pair. Then we’ll
just select which (w0, w1) pair among these finite options has the smallest value of Rabs(w0, w1). This is
guaranteed by the theorem to be an optimal LAD regression line.

Parts (b) and (c) of this problem will require you to write code in this supplementary Jupyter
Notebook. The code that you write in that notebook is autograded, both using public test
cases that you can see in the notebook and hidden test cases that will only be run after you
submit on Gradescope.

To submit your homework, in addition to submitting your answers PDF to the Homework 3
assignment on Gradescope, also submit hw03-code.ipynb to the Homework 3, Problems 6(b)
and 6(c) autograder on Gradescope and wait until you see all public test cases pass!

a) If you are given n data points, how many pairs of points are there? Give your answer in terms
of n.

Hint: Try it out on some small values of n and look for a pattern. Note that if you have two data
points (x1, y1) and (x2, y2), this counts as only one pair of points because the line from (x1, y1) and
(x2, y2) is the same as the line from (x2, y2) to (x1, y1).

Solution: Write your solution here.

b) First, we’ll find the intercept and slope of the regular least squares regression line. In the
linked supplementary notebook, read the problem statement and complete the implementation of the
function least squares regression.
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Solution: Write your solution here.

c) Next, we’ll find the intercept and slope of the least absolute deviations line. In the
linked supplementary notebook, read the problem statement and complete the implementations of the
functions mean absolute error and find best mad line.

Solution: Write your solution here.

d) Now that we have calculated the least squares regression line and the least absolute deviation
regression line for our data, let’s try plotting them together to see the difference! In the linked
supplementary notebook, generate a scatter plot with the data in black, the least squares line in blue,
and the least absolute deviation line in red. Include a picture of your plot in your PDF; this
problem is not autograded.

Solution: Write your solution here.

e) Given your knowledge of the loss functions behind least absolute deviation and least squares
regression, provide one advantage and one disadvantage of using LAD over least squares for regression.

Solution: Write your solution here.
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