Lecture 4

Comparing Loss Functions

DSC 40A, Fall 2024



Announcements

e Homework 1 will be relased by tomorrow and will be due on Friday, October 11th.
o Before working on it, watch the Walkthrough Videos on problem solving and
using Overleaf.

o Using the Overleaf template is required for Homework 2 (and only Homework
2).

e Remember that in, general, groupwork worksheets are released on Sunday and due
Monday.

e Look at the office hours schedule here and plan to start regularly attending!

e Remember to take a look at the supplementary readings linked on the course
website.


https://www.youtube.com/playlist?list=PLDNbnocpJUhYtg3s2__3pbh1kNKYxXaFM
https://dsc40a.com/calendar

Agenda

e Recap: Empirical risk minimization.

e Choosing a loss function.
o The role of outliers.

e Center and spread.

e Towards linear regression.



Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform




Goal

We had one goal in Lectures 2 and 3: given a dataset of values from the past, find the
best constant prediction to make.



The modeling recipe

In Lectures 2 and 3, we made two full passes through our "modeling recipe."

1. Choose a model. l
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3. Minimize average loss to find optimal model parameters.

Ak — mea{n(yl’ ey Yn) " hx = median(y1,...,Yn)



Empirical risk minimization
e The formal name for the process of minimizing average loss is empirical risk
minimization.
e Another name for "average loss" is empirical risk.

¢ When we use the squared loss function, Lg,(yi, h) = (y; — h)? the
corresponding empirical risk is mean squared error:

Rug(h) = 23 (s — )’

n i3

e When we use the absolute loss function, L.ys(y;, h) = |y; — h

, the corresponding
empirical risk is mean absolute error:
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Empirical risk minimization, in general

Key idea: If L(y;, h) is any loss function, the corresponding empirical risk is:

R =+ Ly h)
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Answer at g.dsc40a.com

What questions do you have?
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
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s the following statement true, for any dataset y1, y9, . . ., Yy, and prediction h?
(RabS(h))2 - qu(h)
e A lt's tru and any dataset.

e B.It's true for at least one h for any dataset, but not in general.

.W
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform




Now what?

e We know that, for the constant model H(x) = h, the mean minimizes mean
squared error.

e We also know that, for the constant model H(x) = h, the median minimizes mean
absolute error.

e How does our choice of loss function impact the resulting optimal prediction?
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Comparing the mean and median

e Consider our example dataset of 5 commute times.
Yy = 72 y2 = 90 ys = 61 Y4 = 85

As of now, the median is 85 and the:mean is 80.
What if we add 200 to the largest commute time, 927
Y1 = 72 y2 = 90 y3 = 61 Yy = 85

Key idea: The mean is quite sensitive to outliers.
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Now, the median is g? but the meanis | ) 0 !
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Outliers
y4 — h|is 10 times as big as |y3 — h|, but (y4 — h)? is 100 times (y3 — h)*.

A=t =19
000 e

(4x-h)=(09

The result is that the mean is "pulled" in the direction of outliers, relative to the median.

Below,
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As a result, we say the median is robust to outliers. But the mean was easier to solve
for. 15



Frequency

Distribution of Commuting Time
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Example: Income inequality

Average vs median income
Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted, by ‘\v\ mdn

the currencies' respective purchasing_power (PPP). W\wn {
Average income in USD [Jl] Median income (7 h@

0 10k 20k 30k 40k
Luxembourg

Norway
Switzerland
Australia
United States
Canada
Austria
Iceland
Denmark

Belgium
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Balance points

below

Both the mean and medlan are "balance points" in the distribution.
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Why stop at squared loss?

Empirical Risk, R(h) Derivative of Empirical Risk, == R(h) Minimizer
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Generalized Lp loss

For any p > 1, define the L, loss as follows:

Lp(yi7 h) —

The corresponding empirical risk is:

Ry(h) =

e When p = 1/h* = Median(y1, y2, - - -

What about when p = 37

What about when p — c0?

|yi — h’p

Z |yz — h‘p

>yn)'

When p = 2, h* = Mean(y1, Y2, - - -, Yn)-
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What value does h* approach, as p — 00?

h*

Consider the dataset 1, 2, 3, 14:

On the left:
e The z-axis is p.

e The y-axis is h*, the optimal constant
prediction for L, loss:

10
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30 40 h" = arg}fnlnz Z [yi — Rf?
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inimizer of mean L, loss

The midrange minimizes average L loss!

On the previous slide, we saw that as p — oo, the

approached the midpoint of the minimum and haximum values in the dataset, or the

_

midrange.
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e Asp — 00, Ry(h) = > " 1 |yi — h|P minimizes the "worst case” distance from

any data point". (Read more here).

e |f your measure of "good" is "not far from any one data point", then the midrange
Is the best prediction.
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https://mathworld.wolfram.com/L-Infinity-Norm.html

Another example: 0-1 loss

Consider, for example, the 0-1 loss:

0 yi=nh
Loty k) = {5 %

The corresponding empirical risk is:

1 n
Roa(h) = — > Loa(yih)
1=1
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Question =

Answer at q.dsc40a.com ] YOPO Ft(‘OVl 9 _F' Fw.r ¢
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Suppose Y1, Y2, - - - , Y, are all unique. What is R 1(y1)?
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Minimizing empirical risk for 0-1 loss

Roa(h) = =3

n 3

{

0 yi=h
1 yi#h
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Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, h*!

Always Robust to

Loss Minimizer Differentiable?

Unique? Outliers?
Ly, mean yes no X yes
L.;s median no X  vyes no X
L., midrange yes no X no X
Lo1 mode no X  yes no X

The optimal predictions, h*, are all summary statistics that measure the center of the

dataset in different ways.
26






Towards simple linear regression

e |n Lecture 1, we introduced the idea of
a hypothesis function, H(x).

Commuting Time vs. Home Departure Time

130

e We've focused on finding the best
constant model, H(z) = h.

120

1104

s ol * e Now that we understand the modeling
E o’ . recipe, we can apply it to find the best
wl ° e o simple linear regression model,
o1 ..-3;5:: .:: e °.3. D R H(z) = wy + wrx.
IR e This will allow us to make predictions
: ’ : : that aren't all the same for every data

Home Departure Time (AM)

point.



The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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