Lecture 5

Simple Linear Regression

DSC 40A, Fall 2024

Announcements

- Homework 1 is due Friday night.
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- 0-1 loss
- Predictin rules using features
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Electure Questions"
link in the top right corner of dsc40a.com.

Another example: 0-1 loss

Consider, for example, the **0-1 loss**:

$$L_{0,1}(y_i,h) = egin{cases} 0 & y_i = h \ 1 & y_i
eq h \end{cases}$$

The corresponding empirical risk is:

$$R_{0,1}(h) = rac{1}{n}\sum_{i=1}^n L_{0,1}(y_i,h)$$

Answer at q.dsc40a.com

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0 & y_i=h\ 1 & y_i
eq h \end{cases}$$

Suppose y_1, y_2, \ldots, y_n are all unique. What is $R_{0,1}(y_1)$?

- A. O.
- B. $\frac{1}{n}$.
- C. $\frac{n-1}{n}$.
- D. 1.

Minimizing empirical risk for 0-1 loss

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0 & y_i=h\ 1 & y_i
eq h \end{cases}$$

Summary: Choosing a loss function

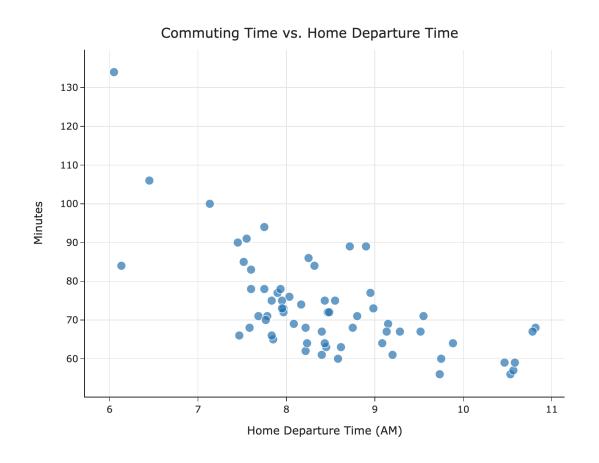
Key idea: Different loss functions lead to different best predictions, h^* !

Loss	Minimizer	Always Unique?	Robust to Outliers?	Differentiable?
$L_{ m sq}$	mean	yes 🗸	no 🗙	yes 🗸
$L_{ m abs}$	median	no 🗙	yes 🗸	no 🗙
L_∞	midrange	yes 🗸	no 🗙	no 🗙
$L_{0,1}$	mode	no 🗙	yes 🗸	no 🗙

The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

Predictions with features

Towards simple linear regression

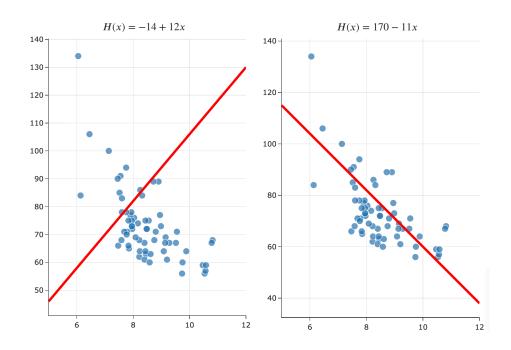


- In Lecture 1, we introduced the idea of a hypothesis function, H(x).
- We've focused on finding the best constant model, H(x) = h.
- Now that we understand the modeling recipe, we can apply it to find the best simple linear regression model, $H(x) = w_0 + w_1 x.$
- This will allow us to make predictions that aren't all the same for every data point.

Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted y. **Parameters** define the relationship between the input and output of a hypothesis function.

The simple linear regression model, $H(x) = w_0 + w_1 x$, has two parameters: w_0 and w_1 .



The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Features

A feature is an attribute of the data – a piece of information.

- Numerical: maximum allowed speed, time of departure
- Categorical: day of week
- Boolean: was there a car accident on the road?

Think of features as columns in a DataFrame (i.e. table).

(add figure)

Variables

- The features, *x*, that we base our predictions on are called predictor variables.
- The quantity, *y*, that we're trying to predict based on these features is called the response variable, dependent variable or target.
- We are trying to predict our commute time as a function of departure time.

Modeling

- We believe that commute time is a function of departure time.
- I.e., there is a function H so that: commute time pprox H(departure time)
- H is called a hypothesis function or prediction rule.
- Our goal: find a good prediction rule, H.

Possible Hypothesis Functions

- H_1 (departure time) = 90 10 ·(departure time-7)
- H_2 (departure time) = 90 (departure time-8)²
- H_3 (departure time) = 20 + 6·departure time

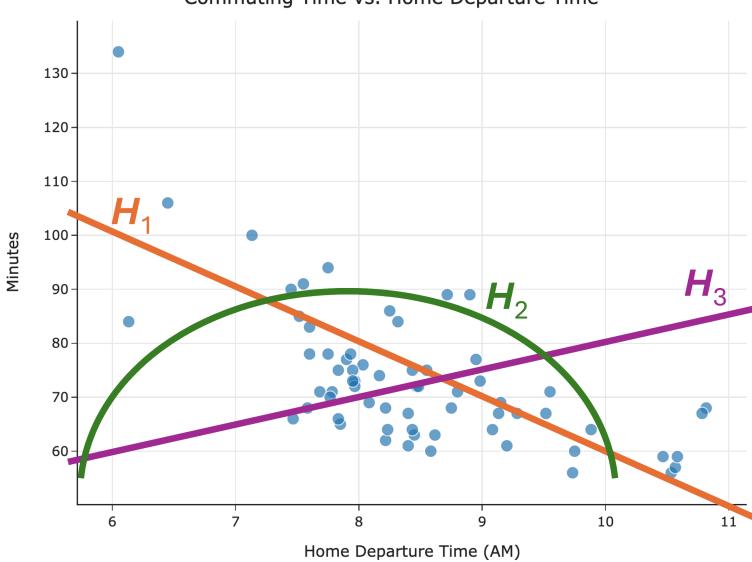
These are all valid prediction rules.

Some are better than others.

Comparing predictions

- How do we know which is best: $H_1, \ H_2, \ H_3$?
- We gather data from *n* days of commute. Let xi be experience, yi be salary:

• See which rule works better on data.



Commuting Time vs. Home Departure Time

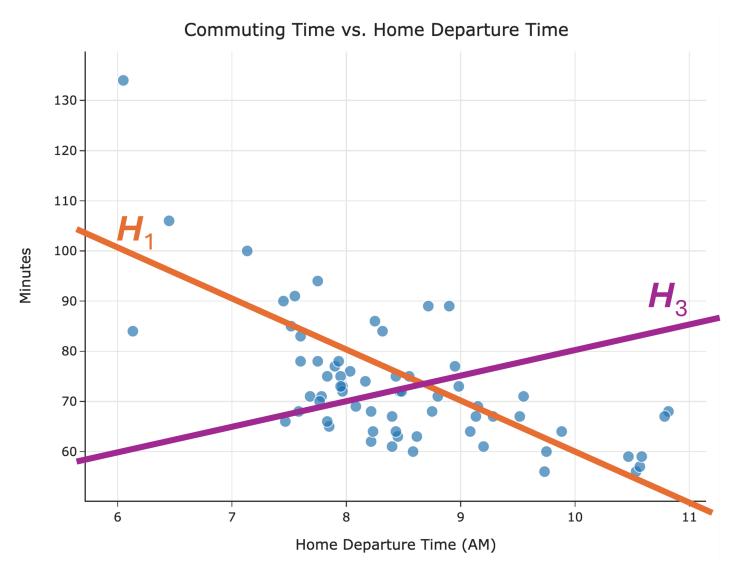
Quantifying the performance of a model

- Reminder: one loss function, which measures how far $H(x_i)$ is from y_i , is absolute loss.
- The mean absolute error of H(x) is

$$R_{\mathrm{abs}}(h) = rac{1}{n}\sum_{i=1}^n |y_i - H(x_i))|$$

- We want the **best** prediction, $H^*(x)$.
- The smaller $R_{
 m abs}(h)$ is, the better the hypothesis.

Mean absolute error



Finding the best hypothesis H(x)

- Goal: out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H with the smallest mean absolute error.
- That is, H^* should be the function that minimizes

$$R_{\mathrm{abs}}(h) = rac{1}{n}\sum_{i=1}^n |y_i - H(x_i))|$$

Finding the best hypothesis H(x)

- Goal: out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H with the smallest mean absolute error.
- That is, H^* should be the function that minimizes

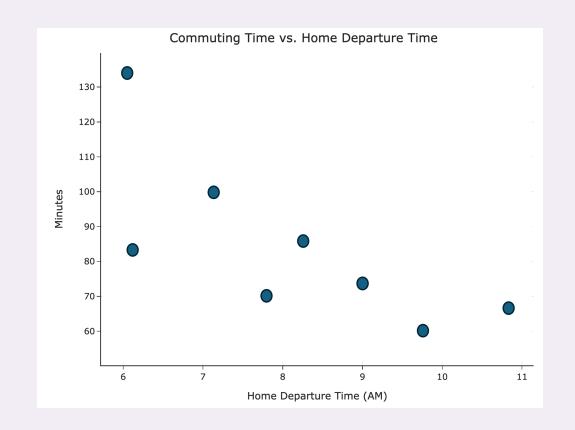
$$R_{\mathrm{abs}}(h) = rac{1}{n}\sum_{i=1}^n |y_i - H(x_i))|$$

• There are two problems with this.

Question 😵 Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

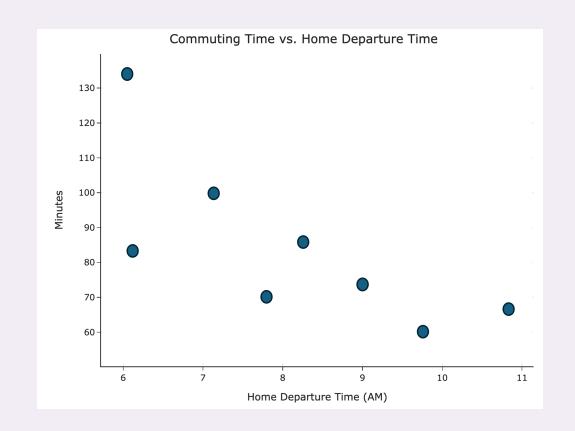
- A. yes
- B. no



Question 😵 Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

- A. yes
- B. no



Problem

- We can make mean absolute error very small, even zero!
- But the function will be weird.
- This is called **overfitting**.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow *H* to be just any function.
- Require that it has a certain form.
- Examples:
 - \circ Linear: $H(x)=w_0+w_1x_2$.
 - $\circ~$ Quadratic: $H(x)=w_0+w_1x_1+w_2x^2.$
 - $\circ\;$ Exponential: $H(x)=w_0e^{w_1x}.$
 - $\circ\;$ Constant: $H(x)=w_0.$

Finding the best linear model

- Goal: Out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.
 - \circ Linear functions are of the form $H(x) = w_0 + w_1 x$.
 - \circ They are defined by a slope (w_1) and intercept (w_0).
- That is, H^* should be the linear function that minimizes

$$R_{\mathrm{abs}}(H) = rac{1}{n}\sum_{i=1}^n ig|y_i - H(x_i)ig|$$

Finding the best linear model

- Goal: Out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.
 - \circ Linear functions are of the form $H(x) = w_0 + w_1 x$.
 - \circ They are defined by a slope (w_1) and intercept (w_0).
- That is, H^* should be the linear function that minimizes

$$R_{ ext{abs}}(H) = rac{1}{n}\sum_{i=1}^n ig|y_i - H(x_i)ig|$$

• There is still a problem with this.

Problem #2

It is hard to minimize the mean absolute error:

$$R_{\mathrm{abs}}(H) = rac{1}{n}\sum_{i=1}^n \left|y_i - H(x_i)
ight|$$

- Not differentiable!
- What can we do?

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^*(x)$ that minimizes empirical risk:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

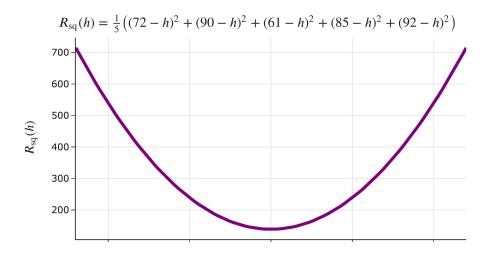
• Since linear hypothesis functions are of the form $H(x)=w_0+w_1x$, we can rewrite $R_{
m sq}$ as a function of w_0 and w_1 :

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i))^2
ight|$$

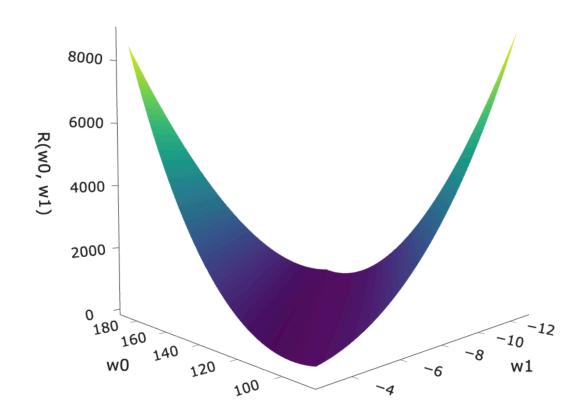
• How do we find the parameters w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$?

Loss surface

For the constant model, the graph of $R_{ m sq}(h)$ looked like a parabola.



What does the graph of $R_{
m sq}(w_0,w_1)$ look like for the simple linear regression model?



Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

• Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

- $R_{
 m sq}$ is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0.
 - Solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).