Lecture 5

Simple Linear Regression

1

DSC 40A, Fall 2024

Announcements

- Homework 1 is due **Friday night**.
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- \bullet 0-1 loss
- Predictin rules using features
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "⁵ Lecture Questions" link in the top right corner of dsc40a.com.

Another example: 0-1 loss

Consider, for example, the **0-1 loss**:

$$
L_{0,1}(y_i,h)=\left\{\begin{matrix}0&y_i=h\\1&y_i\neq h\end{matrix}\right.
$$

The corresponding empirical risk is:

$$
R_{0,1}(h)=\frac{1}{n}\sum_{i=1}^n L_{0,1}(y_i,h)
$$

Answer at q.dsc40a.com

$$
R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}
$$
all unique. What is $R_{0,1}(y_1)$?

Suppose y_1, y_2, \ldots, y_n are all unique. What is $R_{0.1}(y_1)?$

- A. 0.
- \bullet B. $\frac{1}{n}$. $\left(\bullet \right)$ C. $\frac{n-1}{n}$. D. 1.

oppose
$$
y_1, y_2, \ldots, y_n
$$
 are all unique. What is $R_{0,1}(y_1)$?

\n\n- A. 0.
\n- B. $\frac{1}{n}$
\n- C. $\frac{n-1}{n}$
\n- D. 1.
\n
\nBy $\rho \circ r + i \circ \rho$ of $\kappa \parallel \rho_0$ with $\rho + i \circ \rho_0$ for 1 .

\nBy $\frac{1}{n}$ and ρ is a function of ρ with $\$

Minimizing empirical risk for 0-1 loss

$$
R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0 & y_i = h \\ 1 & y_i \neq h \end{cases}
$$

\n1.2,3,14
\n= proportion of all positive *n*th equal
\nto h
\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{18}, M_{19} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{18}, M_{19} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{18}, M_{19} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{10}, M_{17} \neq d
$$

\n
$$
M_{10}, M_{18} \neq d
$$

\n
$$
M_{10}, M_{18} \neq d
$$

\n
$$
M_{10}, M_{10} \neq d
$$

\n
$$
M_{10}, M_{10} \neq d
$$

\n
$$
M_{10}, M_{11} \neq d
$$

\n
$$
M_{10}, M_{12} \neq d
$$

\n
$$
M_{10}, M_{11} \neq d
$$

\n
$$
M_{11} \neq M_{10}
$$

\n
$$
M_{10}, M_{12} \neq d
$$

\n
$$
M_{11} \neq M_{10}
$$

\n
$$
M_{10}, M_{11} \neq d
$$
<

Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, h^* !

The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

Predictions with features

Towards simple linear regression

- In Lecture 1, we introduced the idea of a hypothesis function, $H(x)$.
- We've focused on finding the best **constant model**, $H(x) = h$.
- Now that we understand the modeling recipe, we can apply it to find the best **simple linear regression model**, $H(x) = w_0 + w_1 x.$
- This will allow us to make predictions that aren't all the same for every data point.

Recap: Hypothesis functions and parameters

A hypothesis function, H , takes in an x as input and returns a predicted y . **Parameters** define the relationship between the input and output of a hypothesis function.

The simple linear regression model, $H(x) = w_0 + w_1x$, has two parameters: w_0 and w_1 .

The modeling recipe

1. Choose a model.

2. Choose a loss function. 3. Minimize average loss to find optimal model parameters. $H(x)$ = function of x $H(x)=h$ I
Constant $\int abs = W_0 + W_1x$ $\begin{array}{ccc} & & & & \end{array}$ ^Y ... S find Wo , We

A **feature** is an attribute of the data – a piece of information.

- **Numerical**: maximum allowed speed, time of departure
- **Categorical**: day of week
- **Boolean**: was there a car accident on the road?

Modeling

- We believe that commute time is a function of departure time.
- I.e., there is a function H so that: commuțe time \approx *(H*) departure time) is called a hypothesis function or prediction
is called a hypothesis function or prediction
is called a hypothesis function or prediction
- *H* is called a *hypothesis function* or *prediction rule*.
- \bullet Our goal: find a good prediction rule H .

Possible Hypothesis Functions

(departure time) = $90 - 10$ (departure time-7) $\frac{1}{\sqrt{2\pi}}$

A

 $\overline{\mathbf{A}}$ /

- H_2 (departure time) = 90 (departure time-8)²
- H_3 (departure time) = 20 + 6 departure time

These are all valid prediction rules.

Some are better than others.

Comparing predictions

- How do we know which hyppthesis is best: H_1 , H_2 , H_3 ?
- We gather data from n days of commute. Let x_i be departure time, y_i be commute time:

 (x_1, y_1) (departure time₁, commute time₁) (x_2, y_2) (departure time₂, commute time₂) \rightarrow $\bullet \quad \bullet \quad \bullet$ (departure time $_n$, commute time $_n$) (x_n,y_n)

• See which rule works better on data.

- Reminder: one loss function, which measures how far $H(x_i)$ is from y_i , is absolute <mark>loss. (H(‰)-y</mark>i' predicted commute
- The mean absolute error of $H(x)$ is

prmance of a model
\naction, which measures how far
$$
H(x_i)
$$
 is from y_i , is ab
\nor of $H(x)$ is
\n
$$
R_{\text{abs}}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - (H(x_i))|
$$
\n
$$
\sum_{\text{actual} \text{ commute}} \text{Replace the}
$$

actual commute

t, me

• We want the **best** prediction, $H^*(x)$.

• The smaller $R_{\text{abs}}(h)$ is, the better the hypothesis.

Finding the best hypothesis $H(x)$

- Goal: out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H with the smallest mean absolute error.
- That is, H^* should be the function that minimizes

$$
R_{\text{abs}}(h)=\frac{1}{n}\sum_{i=1}^n|y_i-H(x_i))|
$$

Finding the best hypothesis $H(x)$

- Goal: out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H with the smallest mean absolute error.
- That is, H^* should be the function that minimizes

$$
R_{\text{abs}}(h)=\frac{1}{n}\sum_{i=1}^n|y_i-H(x_i))|
$$

There are two problems with this.

Question & Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

Question & Answer at q.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

B. no \bullet

Problem

- We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called **overfitting**.
- Remember our real goal: make good predictions on data **we haven't seen**. we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:

equire that it has a certain form.

\nExample:

\n• Linear:
$$
H(x) = w_0 + w_1 x
$$
. \leftarrow this, with a linear

\n• Quadratic: $H(x) = w_0 + w_1 x_1 + w_2 x^2$. \leftarrow In a few weeks

\n• Exponential: $H(x) = w_0 e^{w_1 x}$.

\n• Example of the following equations:

\n• Example of the following equations:

\n• The sum of the following

Constant: $H(x)=w_0.$ $e^{-\frac{1}{\sqrt{2}}t}$

Finding the best linear model

- Goal: Out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error. **nodel**

tions $\mathbb{R} \to \mathbb{R}$, find the functions
 $\mathbb{R} \to \mathbb{R}$, find the function
 \mathbb{R}

slope (w_1) and intercept (w_0)

inear function that minimizes
	- Linear functions are of the form $H(x)=w_0+w_1x.$ $w_0 + w_1$
	- \circ They are defined by a slope (w_1) and intercept (w_0) .
- That is, H^* should be the linear function that minimizes

$$
R_{abs}(H)=\frac{1}{n}\sum_{i=1}^n\big|y_i-H(x_i)\big|
$$

Finding the best linear model

- Goal: Out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
	- \circ Linear functions are of the form $H(x) = w_0 + w_1x$.
	- \circ They are defined by a slope (w_1) and intercept (w_0) .
- That is, H^* should be the linear function that minimizes

$$
R_{abs}(H)=\frac{1}{n}\sum_{i=1}^n\big|y_i-H(x_i)\big|
$$

There is still a problem with this. \bullet

Problem #2

It is hard to minimize the mean absolute error:

$$
R_{abs}(H) = \frac{1}{n} \sum_{i=1}^{n} |y_i - H(x_i)|
$$

We can't use calculus

- Not differentiable! W^2
- What can we do?

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^*(x)$ that minimizes empirical risk:

$$
MSE \qquad R_{\text{sq}}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2
$$
\n
$$
\qquad \qquad \text{Lap} \qquad \text{H(x_i)} = \text{W_0} + \text{W_4} \text{Xi}
$$

• Since linear hypothesis functions are of the form $H(x) = w_0 + w_1x$, we can rewrite R_{sq} as a function of w_0 and w_1 :

$$
R_{\mathrm{sq}}(w_0,w_1) = \frac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i) \right)^2
$$

• How do we find the parameters w_0^* and w_1^* that minimize $R_{sa}(w_0, w_1)$?

Loss surface

For the constant model, the graph of $R_{\rm{sq}}(h)$ looked like a parabola.

Minimizing mean squared error for the simple linear model

• Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error: mean squared errors
 $\frac{\partial R_{sq}}{\partial V_{o}}$, $\frac{\partial R_{sq}}{\partial W_{q}}$

Minimizing multivariate functions

\n\n- Our goal is to find the parameters
$$
w_0^*
$$
 and w_1^* that minimize mean squared error:
\n- $$
R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2
$$
\n- $$
R_{sq}
$$
 is a function of two variables: w_0 and w_1 .
\n- To minimize a function of multiple variables:
\n- $$
\mathcal{R}_{sq}
$$
\n- Take partial derivatives with respect to each variable.
\n- $$
\mathcal{R}_{sq}
$$
\n- Set all partial derivatives to 0.
\n- Solve the resulting system of equations.
\n- $$
w_0^*
$$
\n- $$
w_0^*
$$
\n- Since that you've found a minimum, rather than a maximum or saddle point
\n

- $R_{\rm sq}$ is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
	- Take partial derivatives with respect to each variable.
		- Set all partial derivatives to 0.
- Solve the resulting system of equations. Next $\begin{bmatrix} 0 & \text{Set all partial derivatives to 0.} \\ \vdots & \vdots \\ \mathcal{M} & \mathcal{M} \end{bmatrix}$ of Solve the resulting system of equations. $\begin{bmatrix} 0 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$
	- (using the second derivative test for multivariate functions).