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Homework 1 is due Friday night.
Look at the office hours schedule here and plan to start regularly attending!

Remember to take a look at the supplementary readings linked on the course
website.
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0-1 loss
Predictin rules using features

Simple linear regression.

Minimizing mean squared error for the simple linear model.
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Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!
If the direct link doesn't work, click the "  Lecture Questions"

link in the top right corner of dsc40a.com.
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Consider, for example, the 0-1 loss:

The corresponding empirical risk is:
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Answer at q.dsc40a.com

Suppose  are all unique. What is ?

A. 0.
B. .

C. .

D. 1.
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Key idea: Different loss functions lead to different best predictions, !

Loss Minimizer
Always

Unique?
Robust to
Outliers?

Differentiable?

mean yes no yes 

median no yes no 

midrange yes no no 

mode no yes no 

The optimal predictions, , are all summary statistics that measure the center of the
dataset in different ways.
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Predictions with features
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In Lecture 1, we introduced the idea of
a hypothesis function, .

We've focused on finding the best
constant model, .

Now that we understand the modeling
recipe, we can apply it to find the best
simple linear regression model,

.
This will allow us to make predictions
that aren't all the same for every data
point.
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A hypothesis function, , takes in an  as input and returns a predicted .
Parameters define the relationship between the input and output of a hypothesis
function.

The simple linear regression model, , has two parameters:  and
.
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1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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A feature is an attribute of the data – a piece of information.

Numerical: maximum allowed speed, time of departure

Categorical: day of week

Boolean: was there a car accident on the road?

Think of features as columns in a DataFrame (i.e. table).

Departure time Day of week Accident on route Commute time

7:05 Monday yes 101

8:03 Tuesday no 87

10:20 Wednesday yes 79

8:30 Thursday no 76 13
:y



We believe that commute time is a function of departure time.
I.e., there is a function  so that:
commute time  (departure time)

 is called a hypothesis function or prediction rule.
Our goal: find a good prediction rule .
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(departure time) = 90 - 10 (departure time-7)
(departure time) = 90 - (departure time-8)

(departure time) = 20 + 6 departure time

These are all valid prediction rules.
Some are better than others.
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How do we know which hyppthesis is best: ?
We gather data from  days of commute. Let  be departure time,  be
commute time:
(departure time  , commute time ) 
(departure time  , commute time ) 

(departure time  , commute time ) 

See which rule works better on data.
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Reminder: one loss function, which measures how far  is from , is absolute
loss.

The mean absolute error of  is

We want the best prediction, .

The smaller  is, the better the hypothesis.
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Goal: out of all functions , find the function  with the smallest mean
absolute error.

That is,  should be the function that minimizes
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Goal: out of all functions , find the function  with the smallest mean
absolute error.

That is,  should be the function that minimizes

There are two problems with this.
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Given the data below, is there a prediction rule H which has zero mean absolute error?

A. yes

B. no
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Given the data below, is there a prediction rule H which has zero mean absolute error?

A. yes

B. no
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We can make mean squared error very small, even zero!
But the function will be weird.

This is called overfitting.

Remember our real goal: make good predictions on data we haven't seen.
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Don't allow  to be just any function.
Require that it has a certain form.

Examples:
Linear: .
Quadratic: .

Exponential: .

Constant: .
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Goal: Out of all linear functions , find the function  with the smallest
mean squared error.

Linear functions are of the form .
They are defined by a slope ( ) and intercept ( ).

That is,  should be the linear function that minimizes
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Goal: Out of all linear functions , find the function  with the smallest
mean squared error.

Linear functions are of the form .
They are defined by a slope ( ) and intercept ( ).

That is,  should be the linear function that minimizes

There is still a problem with this.
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It is hard to minimize the mean absolute error:

Not differentiable!

What can we do?
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We'll choose squared loss, since it's the easiest to minimize.
Our goal, then, is to find the linear hypothesis function  that minimizes
empirical risk:

Since linear hypothesis functions are of the form , we can re-
write  as a function of  and :

How do we find the parameters  and  that minimize ?
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For the constant model, the graph
of  looked like a parabola.

What does the graph of  look
like for the simple linear regression model?
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Minimizing mean squared error for the simple
linear model
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Our goal is to find the parameters  and  that minimize mean squared error:

 is a function of two variables:  and .

To minimize a function of multiple variables:
Take partial derivatives with respect to each variable.

Set all partial derivatives to 0.

Solve the resulting system of equations.

Ensure that you've found a minimum, rather than a maximum or saddle point
(using the second derivative test for multivariate functions).
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