Lecture 5

Simple Linear Regression

DSC 40A, Fall 2024



Announcements

e Homework 1 is due Friday night.
e Look at the office hours schedule here and plan to start regularly attending!

e Remember to take a look at the supplementary readings linked on the course
website.



Agenda

e 0-1loss
e Predictin rules using features

e Simple linear regression.

e Minimizing mean squared error for the simple linear model.
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Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.



Another example: 0-1 loss

Consider, for example, the 0-1 loss:

0 yi=h
Loal(yiah) — {1 zz # h

The corresponding empirical risk is:

1 n
Roa(h) = — > Loa(yi h)
1=1
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Minimizing empirical risk for 0-1 loss
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Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, h*!

Always Robust to

Loss Minimizer Differentiable?

Unique? Outliers?
—> Lgg mean yes no X yes
L.« median no X  vyes no X
L., midrange yes no X no X
Lo1 mode no X  yes no X

The optimal predictions, h*, are all summary statistics that measure the center of the
dataset in different ways.






Towards simple linear regression

e |In Lecture 1, we introduced the idea of
a hypothesis function, H(x).

Commuting Time vs. Home Departure Time

sof e We've focused on finding the best
constant model, H(z) = h.
% "1 e Now that we understand the modeling
L o’ . recipe, we can apply it to find the best
" .:-.-, b . simple linear regression model,
.,-e;§.°: .:'. : '5, D s H(z) = wy + wz.
Yt e This will allow us to make predictions
é ’ : 5 that aren't all the same for every data

Home Departure Time (AM)

point.



Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted v.
Parameters define the relationship between the input and output of a hypothesis

function.

The simple linear regression model, H(x) = wy 4+ wyx, has two parameters: wy and

Ww1.

H((x)=-14+12x H(x)=170-11x
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The modeling recipe

1. Choose a model.

6= b

CO\/U"'T/\V\+

Hoa: Funchion o4
(‘{\OT CQHS+5\W>Y

2. Choose a loss function. b = W T luyy

k(“(&‘%ﬂi) é;br

3. Minimize average loss to find optimal model parameters.

Wﬁl\f\(k \\fo,\zdr\

)

12



Features

A feature is an attribute of the data — a piece of information.

e Numerical: maximum allowed speed, time of departure

e Categorical: day of week

e Boolean: was there a car accident on the road?

Think of features as columns in a DataFrame (i.e. table). c
v

eparture timel

:05

Day of week Accident on rout

Monday
Tuesday
Wednesday
Thursday

yes
no
yes

no

| L

/(ommute ti

101
87
79
/6

i
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Modeling

e We believe that commute time is a function of departure time.

e |.e, thereis a function H so that:

commute time ~ eparture time)
y: eJ K¢
e H is called a hypothesis function or prediction rule.

e Qur goal: find a good prediction rule H.
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Possible Hypothesis Functions
e H(departure time) = 90 - 10 -(departure time-7) \
e Hy(departure time) = 90 - (departure time-8)2 /7~ O\
e Hj3(departure time) = 20 + 6-departure time /i

These are all valid prediction rules.
Some are better than others.
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Comparing predictions

e How do we know which hyppthesis is best: H1, Hs, H3?

e We gather data from n days of commute. Let x; be departure time, y; be
commute time:

(departure time; , commute time;) (x1,91)

(departure times , commute times) (:cz, yz)
—

(departure time,, , commute time,,) (T, Yn)

e See which rule works better on data.
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Commuting Time vs. Home Departure Time

Home Departure Time (AM)




Quantifying the performance of a model

e Reminder: one loss function, which measures how far H(x;) is from y;, is absolute

loss. lH(S‘«:)"}L' \

e The mean absolute error of H(x) is
abs Z ‘yz ‘é}

[- L—-hfﬁrkm e

Pre,,x'\de)k Copmnte

e We want the best prediction, H*(x).
0\4"\»4\' ca\mlkuk

e The smaller R,ps(h) is, the better the hypothesis. .
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Mean absolute error
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Finding the best hypothesis H(x)

e Goal: out of all functionsR — R, find the function H with the smallest mean
absolute error.

e Thatis, H* should be the function that minimizes

Run(h) = + 3y~ H(z)
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Finding the best hypothesis H(x)

e Goal: out of all functions R — IR, find the function H with the smallest mean
absolute error.

e Thatis, H* should be the function that minimizes

Run(h) = + 3y~ H(z)

e There are two problems with this.
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Question = Answer at g.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

e B.no
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Question = Answer at g.dsc40a.com

Given the data below, is there a prediction rule H which has zero mean absolute error?

e B.no
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Problem

We can make mean squared error very small, even zero!
But the function will be weird.

This is called overfitting.

Remember our real goal: make good predictions on data we haven't seen.
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Solution

e Don't allow H to be just any function.
e Require that it has a certain form.

e Examples:
o Linear: H(x) = wy + w1 . ~<———£"~'U' ek non (inear

o Quadratic: H(z) = wg + wix1 + Wox?. e—In a ey S
o Exponential: H(z) = woe"”. /

o Constant: H(x) = wy. <— last \A2h
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Finding the best linear model

e Goal: Out of all linear functions R — IR, find the function H* with the smallest
mean squared error.
o Linear functions are of the form H(z) = wo + w1z.

o They are defined by a slope (w1) and intercept (wy).

e Thatis, H* should be the linear function that minimizes

1
Rabs(H) — Z Z ‘yz — H(wz)‘
1=1
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Finding the best linear model

e Goal: Out of all linear functions R — IR, find the function H* with the smallest
mean squared error.
o Linear functions are of the form H(x) = wg + w1 .

o They are defined by a slope (w1) and intercept (wy).

e Thatis, H* should be the linear function that minimizes

1
Rabs(H) — Z Z ‘yz — H(wz)‘
1=1

e o There is still a problem with this.
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Problem #2

It is hard to minimize the mean absolute error:

1 n
i=1
‘ (
o Not differentiable! W& cau’f use calewlus

e \What can we do?
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Minimizing mean squared error for the simple linear model

e We'll choose squared loss, since it's the easiest to minimize.

e Our goal, then, is to find the linear hypothesis function H*(x) that minimizes
empirical risk:
1 n

MSE Ry (H) = — Z (yi — H($Z))2

n

=1 Lo H'(x;)-: Wo +W4Xi

e Since linear hypothesis functions are of the form H(xz) = wy + w1z, we can re-

write Rgq as a function of wg and wy:
1 & /T//’:[/

qu(’UJO,’wl) — — Z (yz — (’wO + ’UJ1$Z'))2 1 I
" m ¥
but not e

e How do we find the parameters wj and w] that minimize Ry (wg, w1)?



Loss surface

For the constant model, the graph What does the graph of Rsq(wg,w1) look
of Rsq(h) looked like a parabola. like for the simple linear regression model?
Ryq(h) = (72 = > + (90 — h)> + (61 — h)? + (85 — h)* + (92 — h)?) M S\«P‘PLCL oS 'F'q'\(

600: 8000 - O.F LJQ/L\[A
§ 400: 6000 -
2
300 é
200 % 4000
ﬁU‘L pormaneter h o

w0 wl
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d error for the simple
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Minimizing multivariate functions

e Our goal is to find the parameters w, and w7 that minimize mean squared error:

qu(w07w1) — i i (y’b _ (wO T wlwi))Q

n

* Rgqis afunction of two variables: wy and wj.

e To minimize a function of multiple variables: bRJZ DKJ!
o Take partial derivatives with respect to each variable. v, ) Y,
—~ — 0

N._k"
Lo

o Set all partial derivatives to 0.
o Solve the resulting system of equations. Vo“" ) \J;b

o Ensure that you've found a minimum, rather than a maximum or saddle point
(using the second derivative test for multivariate functions).
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