Lectures 6-7 Simple Linear Regression

DSC 40A, Fall 2024

Agenda

- Simple linear regression.
- Minimizing mean squared error for the simple linear model.
- Correlation.
- Interpreting the formulas.
- Connections to related models.
- What next? Linear algebra.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Electure Questions"
link in the top right corner of dsc40a.com.

Finding the best linear model

- Goal: Out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
 - \circ Linear functions are of the form $H(x) = w_0 + w_1 x$.
 - \circ They are defined by a slope (w_1) and intercept (w_0).
- That is, H^* should be the linear function that minimizes

• We chose squared loss, since it's the easiest to minimize.

Minimizing mean squared error for the simple linear model

• Our goal is to find the linear hypothesis function $H^*(x)$ that minimizes empirical risk:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Plugging in the linear hypothesis $H(x) = w_0 + w_1 x_i$ we can re-write $R_{
m sq}$ as a function of w_0 and w_1 :

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i))^2
ight)$$

• How do we find the parameters w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$?

Loss surface

For the constant model, the graph of $R_{ m sq}(h)$ looked like a parabola.

What does the graph of $R_{
m sq}(w_0,w_1)$ look like for the simple linear regression model?

Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

• Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

- R_{sq} is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - minimize a function of multiple variables: Take partial derivatives with respect to each variable. Set all partial derivatives to 0. Set all partial derivatives to 0.

- Solve the resulting system of equations.
- Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions). Rsy is parabolic, convex - single minimu

Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x,y) = x^{2} - 8x + y^{2} + 6y - 7$$
Complete the square
$$f(x,y) = (x-y)^{2} + (y-b)^{2} + c$$
(no calculus)
$$f(x,y) = (x-y)^{2} - 16 + (y+3)^{2} - 9 - 7$$

$$= (x-y)^{2} + (y+3)^{2} - 32 \qquad \Rightarrow x = 4$$

$$f_{x} = \frac{2}{2} - 32 \qquad \Rightarrow y = -32$$

$$f_{x} = \frac{2}{2} - 32 \qquad \Rightarrow y = -32$$

$$f_{x} = \frac{2}{2} - 3 \qquad = -32$$

$$f_{y} = \frac{2}{2} - 3 \qquad = -32$$

$$f_{y} = -32 \qquad = -32$$

9

Minimizing mean squared error

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

To find the w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$, we'll:

1. Find
$$\frac{\partial R_{sq}}{\partial w_0}$$
 and set it equal to 0.
2. Find $\frac{\partial R_{sq}}{\partial w_1}$ and set it equal to 0.

3. Solve the resulting system of equations.

Answer at q.dsc40a.com

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

Which of the following is equal to $\frac{\partial R_{sq}}{\partial w_0}$?

$$\begin{array}{ll} \hspace{0.1cm} \hspace{0} \hspace{0} \hspace{0$$

$$\begin{aligned} R_{\rm sq}(w_0,w_1) &= \frac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i) \right)^2 \\ \frac{\partial R_{\rm sq}}{\partial w_1} &= \frac{1}{n} \sum_{i=1}^n \left(\sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i \right) \right) \cdot \frac{\partial}{\partial w_1} \left(y_i - \left(w_0 + w_1 x_i \right) \right) \right) \end{aligned}$$

$$= \frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 \times i))(-\chi_i)$$

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-\left(y_{o}+y_{1}x_{i}\right)\right)\chi_{i}$$

Strategy

We have a system of two equations and two unknowns (w_0 and w_1):

$$-rac{2}{n}\sum_{i=1}^n \left(y_i-(w_0+w_1x_i)
ight)=0 \qquad -rac{2}{n}\sum_{i=1}^n \left(y_i-(w_0+w_1x_i)
ight)\!x_i=0$$

To proceed, we'll:

1. Solve for w_0 in the first equation.

The result becomes w_0^* , because it's the "best intercept."

2. Plug w_0^* into the second equation and solve for w_1 . The result becomes w_1^* , because it's the "best slope."

Solving for
$$w_0^*$$

$$-\frac{2}{n}\sum_{i=1}^n (y_i - (w_0 + w_1 x_i)) = 0$$

$$\sum_{i=1}^n (y_i - (w_0 + w_1 x_i)) = 0$$

$$\sum_{i=1}^n (y_i - (w_0 + w_1 x_i)) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i = \frac{1}{n}\sum_{i=1}^n (y_i - w_1 x_i) = 0$$

$$W_i =$$

Goal: isolate Wy $\frac{\partial K_s}{\partial k_s} = 0$ Solving for w_1^st $V_{p} = y - W_{1} \times$ $-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i=0}$ $\int (y_i - \overline{y}) \chi_i = w_1 \int (\chi_i - \overline{\chi}) \chi_i$ $\sum \left(y_{i} - \left(v_{o} + w_{i} x_{i} \right) \right) x_{i} = 0$ $(y_i - y) x_i$ $\sum \left(y_i - \left(\overline{y} - W_1 \overline{x} + W_1 \overline{x}_i \right) \right) x_i = 0$ $\sum (x_i - \overline{X}) X_i$ $(y_i - y_i) \times i - w_n \sum (x_i - \overline{x}) \times i = 0$ * cannot cancel out Xi in 16 numerator and denominator

Least squares solutions

We've found that the values w_0^* and w_1^* that minimize $R_{
m sq}$ are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

where:

$$ar{x}=rac{1}{n}\sum_{i=1}^n x_i \qquad \qquad ar{y}=rac{1}{n}\sum_{i=1}^n y_i$$

These formulas work, but let's re-write w_1^* to be a little more symmetric.

Least squares solutions

• The least squares solutions for the intercept w_0 and slope w_1 are:

$$egin{aligned} & w_1^* = rac{\sum\limits_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum\limits_{i=1}^n (x_i - ar{x})^2} & w_0^* = ar{y} - w_1^*ar{x} \end{aligned}$$

- We say w_0^* and w_1^* are optimal parameters, and the resulting line is called the regression line. Men using squared loss
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- To make predictions about the future, we use $H^*(x) = w_0^* + w_1^* x$.

Causality

No.

Can we conclude that leaving later causes you to get to school quicker? This is just a pattern!

21

What's next?

We now know how to find the optimal slope and intercept for linear hypothesis functions. Next, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Discuss *causality*.
- Learn how to build regression models with **multiple inputs**.
 - To do this, we'll need linear algebra!