Lectures 6-7

Simple Linear Regression

DSC 40A, Fall 2024
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e Interpreting the formulas.

e Connections to related models.
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Least squares solutions

e Our goal was to find the parameters wy and w1 * that minimized:
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e To do so, we used calculus, and we found that the minimizing values are:

e We say w; and w] are optimal parameters, and the resulting line is called the
regression line.
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Now what?

We've found the optimal slope and intercept for linear hypothesis functions using
squared loss (i.e. for the regression line). Now, we'll:

e See how the formulas we just derived connect to the formulas for the slope and
intercept of the regression line we saw in DSC 10.
o They're the same, but we need to do a bit of work to prove that.

e Learn how to interpret the slope of the regression line.
e Understand connections to other related models.

e Learn how to build regression models with multiple inputs.
o To do this, we'll need linear algebral!
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Question =

Answer at g.dsc40a.com

Consider a dataset with just two points, (2,5) and (4, 15). Suppose we want to fit a

linear hypothesis function to this dataset using squared loss. What are the values of wy
and w] that minimize empirical risk?
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The correlation coefficient

e The correlation coefficient, r, is defined as the average of the product of x and y,
when both are in standard units.

e |Let g, be the standard deviation of the x;s, and T be the mean of the x;s.
— e an c,u/\‘t“ﬁrin

e x; in standard units is
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The correlation coefficient, visualized
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Another way to express w3

* |t turns out that w7, the optimal slope for the linear hypothesis function when
using squared loss (i.e. the regression line), can be written in terms of 7!

n

Z(fﬂi —z)(yi — 9)
* 1=1 Oy
wy = - :7“0_—
x

e [t's not surprising that 7 is related to w?, since r is a measure of linear association.
1

e Concise way of writing w and wy:
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Dangers of correlation
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Dangers of correlation
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Interpreting the slope

e The units of the slope are units of y per units of x.

e In our commute times example, in H(x) = 142.25 — 8.19z, our predicted
commute time decreases by 8.19 minutes per hour.
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Interpreting the slope

e Since o, > 0 and o, > 0, the slope's sign is r's sign.
* As the y values get more spread out, o, increases, so the slope gets steeper.

e As the x values get more spread out, o increases, so the slope gets shallower.

37



&-QVM]A Qv

. . -)Z, Mh{)& Un l\'S o f ) M\j ,@,\',lr,dﬁ
Interpreting the intercept AT ’ Ok efr N
_ _ = Unpt
N Wy =Y — wiT ooty
. . = m&w\iﬁ'l
Predicted Commute Time = 142.25 - 8.19 * Departure Hour 3 A .
e f A Z)‘
] ° Tor HOJ bhet e nd opline] ol e What are the units of the intercept?
ol / H'(i) 75\3 N.CQ.CIA_r)"J
110+ \AV\\%& DF(\ \j

100 ®

Minutes to School

e What is the value of H*(Z)?
% £
Hlk) =+ i

N ~
- D v(/‘//|\1E>< ‘LL/*:)(L‘

I Home ;Depart eTmIe (AM) | __ — W >(u(>< \X )
H (< o) -

(N\'QPCQ( F

- predicked Efgwﬁﬁ\)f " (X\ " Y-y (% /6?) =y ”&)’53

8



T

Question =
Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add
75 minutes to all commute times in our dataset. What happens to the resulting
regression line?

e A Slope increases, intercept increases. OM*F Md\trs 2
e B. Slope decreases, intercept increases. ¢ 0 D >
Q C. Slop_e\stays the same, intercept increa@ ': .0. ’
e D. Slope stays the same, intercept stays the same. ° K : "
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