Lectures 6-7

Simple Linear Regression

DSC 40A, Fall 2024

Agenda

- Simple linear regression.
- Correlation. Least squares
- Interpreting the formulas.
- Connections to related models.

- HW ¹ due tonight , HW2 released - Submit regrade requests no need for emails

solution

Least squares solutions

Our goal was to find the parameters w_0^* and w_1^* that minimized:

utions

\nfind the parameters
$$
w_0^*
$$
 and w_1^* that minimize $\frac{\#(\mathsf{x}_i')}{\#\mathsf{x}_i}$

\n
$$
R_{\text{sq}}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i) \right)^2
$$

To do so, we used calculus, and we found that the minimizing values are:

$$
w_1^* = \frac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2} \qquad \qquad w_0^* = \bar{y} - w_1^*\bar{x}
$$

• We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the **regression line**.

Now what?

We've found the optimal slope and intercept for linear hypothesis functions using squared loss (i.e. for the regression line). Now, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
	- \circ They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Understand connections to other related models. \bullet
- Learn how to build regression models with **multiple inputs**.
	- To do this, we'll need linear algebra!

Answer at q.dsc40a.com

Consider a dataset with just two points, $(2, 5)$ and $(4, 15)$. Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

• A. $w_0^* = 2$, $w_1^* = 5$

• B.
$$
w_0^* = 3
$$
, $w_1^* = 10$

• C.
$$
w_0^* = -2
$$
, $w_1^* = 5$
\n• D. $w_0^* = -5$, $w_1^* = 5$

Correlation

Quantifying patterns in scatter plots

- In DSC 10, you were introduced to the idea of the **correlation** coefficient, r.
- It is a measure of the strength of the **linear association** of two variables, and y .
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1. may& ive : straight inte.
It ranges between -
r negative: nega $\bigcup_{\alpha,\beta,\gamma,\sigma\in\mathcal{A}}\mathcal{E}_{\alpha,\beta}$ r negative: negative association the closer r is to t_1 , the stronger the correlation!

28

Pearson's correlation The correlation coefficient

- The correlation coefficient, r , is defined as the average of the product of x and y , when both are in standard units.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.
- x_i in standard units is $\frac{x_i \bar{x}}{\sigma_x}$. \leftarrow std
- The correlation coefficient, then, is:

$$
r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right) \nabla_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
$$
\n
$$
\frac{1}{\sqrt{x_i - \bar{x}}}
$$

COVAMIONCE

atterative

The correlation coefficient, visualized

Another way to express w_1^*

It turns out that w_1^* , the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of $r!$

$$
w_1^*=\frac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}=r\frac{\sigma_y}{\sigma_x}
$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$
w_1^* = r\frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^*\bar{x}
$$

Proof that $w_1^* = r \frac{\sigma_y}{\sigma_x}$
 $w_1^* = \sum_{i=1}^r (x_i - \bar{x}) (y_i - \bar{y})$ $\frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$ $=\frac{\gamma\Gamma\gamma\sqrt{3}}{\gamma\Gamma\gamma}$ $= \frac{1}{\sqrt{2}}$

 $\Gamma = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma_x} \right) \left(\underbrace{Y_i - \overline{Y}}{\sigma_y} \right)$ $\Gamma = \frac{1}{n\pi x \sigma y} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ $\sum (x_i - \overline{x})(y_i - \overline{y}) = n\nu\tau_{xy}y$ $\overline{v_{x}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$ $\begin{array}{ccc} \nabla x & = & \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \end{array}$ $\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}=n\tau_{x}^{2}$

32

Dangers of correlation

Dangers of correlation

Datasauras dozen

[Matejkn et al . 2017)

Interpreting the formulas

Interpreting the slope

- The units of the slope are units of y per units of x .
- In our commute times example, in $H(x) = 142.25 8.19x$, our predicted commute time **decreases by 8.19 minutes per hour**.

^X departure tim in hours commute time in minutes Y

~ is the same in all plots

Interpreting the slope

- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

reminder reminde

• What are the units of the intercept?

units of \bigcup

38

• What is the value of $H^*(\bar{x})$? $H \overset{\text{\tiny def}}{=} \frac{1}{2}$ $(X_i) = W_0^* +$ mits of the int

units of

ue of $H^*(\bar{x})$
 $w_0^* + w_1^*$
 $-\frac{1}{2}w_1^*\bar{x}$ ω_1^{\ast} \times = $\int_{0}^{1} 6 \pi i \int_{0}^{1} 6 \pi$ $y-w_1^*(\overrightarrow{x}\sqrt{x})=y$ $H(\overrightarrow{x})=$

Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
	- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.

