Lectures 6-7

Simple Linear Regression

DSC 40A, Fall 2024

Agenda

- Simple linear regression.
 Correlation.
- Correlation.
- Interpreting the formulas.
- Connections to related models.

Least squares solutions

• Our goal was to find the parameters w_0^* and w_1^* that minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i))^2
ight)^2$$

• To do so, we used calculus, and we found that the minimizing values are:

$$egin{aligned} & \displaystyle w_1^* = rac{\displaystyle \sum_{i=1}^n (x_i - ar x)(y_i - ar y)}{\displaystyle \sum_{i=1}^n (x_i - ar x)^2} & w_0^* = ar y - w_1^*ar x \end{aligned}$$

• We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the **regression line**.

Now what?

We've found the optimal slope and intercept for linear hypothesis functions using squared loss (i.e. for the regression line). Now, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Understand connections to other related models.
- Learn how to build regression models with multiple inputs.
 - To do this, we'll need linear algebra!

Answer at q.dsc40a.com

Consider a dataset with just two points, (2, 5) and (4, 15). Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

• A. $w_0^*=2$, $w_1^*=5$

• B.
$$w_0^*=3$$
, $w_1^*=10$

• C.
$$w_0^* = -2$$
, $w_1^* = 5$
• D. $w_0^* = -5$, $w_1^* = 5$

Correlation

Quantifying patterns in scatter plots

- In DSC 10, you were introduced to the idea of the **correlation coefficient**, *r*.
- It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1.
 r Agative: negative association
 r positive: positive association
 the closer r is to ±1, the stronger the correlation?

28

Rearson's correlation The correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.
- x_i in standard units is $\frac{x_i \bar{x}}{\sigma_x}$. $\leftarrow sth$.
- The correlation coefficient, then, is:

Covarion ce

atterative

The correlation coefficient, visualized

Another way to express w_1^st

• It turns out that w_1^* , the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of r!

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x}$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$w_1^* = r rac{\sigma_y}{\sigma_x} \qquad w_0^* = ar y - w_1^*ar x$$

Proof that $w_1^* = r \frac{\sigma_y}{\sigma_x}$ $\sum_{i=1}^{r} (\chi_i - \bar{\chi}) (\frac{\sigma_x}{\sigma_i} - \bar{\chi})$ $\sum_{i=1}^{n} (x_i - \overline{x})^{-1}$ = Art. V. = $\int \nabla$

 $r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{v_x} \right) \left(\frac{y_i - \overline{y}}{v_y} \right)$ $r = \frac{1}{n\sigma_{x}\sigma_{y}} \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})$ $\sum (x_i - \overline{x})(y_i - \overline{y}) = n n \overline{v_x} \overline{v_y}$ $\nabla_{\mathbf{x}} = \int_{i}^{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}$ $\nabla_{\mathbf{x}}^{2} = \int_{n}^{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}$ $\frac{1}{n} \sum_{x_{i} - \bar{x}}^{n} (x_{i} - \bar{x})^{2} = N \sigma_{x}^{2}$

32

Dangers of correlation

Dangers of correlation

Datasauras dozen

34

Interpreting the formulas

Interpreting the slope

- The units of the slope are **units of** y **per units of** x.
- In our commute times example, in H(x) = 142.25 8.19x, our predicted commute time decreases by 8.19 minutes per hour.

Interpreting the slope

- Since $\sigma_x \ge 0$ and $\sigma_y \ge 0$, the slope's sign is r's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

reminder

• What are the units of the intercept?

units of y

• What is the value of $H^*(\bar{x})$? $H^*(\chi_i) = W_0^* + W_1^* \chi_i$ $= \overline{y} - W_1^* \overline{\chi} + W_1^* \chi_i$ $= \overline{y} - W_1^* (\overline{\chi} - \chi_i)$ $H(\bar{\chi}) = \overline{y} - W_1^* (\overline{\chi} - \chi_i) = \overline{y}$ $H(\bar{\chi}) = \overline{y} - W_1^* (\overline{\chi} - \chi_i) = \overline{y}$

Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
 - C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.

