Lectures 8-10

Linear algebra: Dot products and
Projections

DSC 40A, Fall 2024



Announcements

e Homework 2 was released Friday. Remember that using the Overleaf template is
required for Homework 2 (and only Homework 2).

e Groupwork 3 is due tonight.

e Check out FAQs page and the tutor-created supplemental resources on the course

website.


https://dsc40a.com/faqs
https://dsc40a.com/resources/#tutor-created-supplemental-resources

Agenda
e Recap: Simple linear regression and correlation.
e Connections to related models.
e Dot products.

e Spans and projections.



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/

Minutes to School

Predicted Commute Time = 142.25 - 8.19 * Departure Hour
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Simple linear regression

e Model: H(z) = wy + wy.
e Loss function: squared loss, i.e. Lsq(ys, H(z;)) = (y; — H(z;))?.

e Average loss, i.e. empirical risk:

n

1
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i=1

e Optimal model parameters, found by minimizing empirical risk:
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The correlation coefficient

e The correlation coefficient, r, is defined as the average of the product of x and y,
when both are in standard units.

e |Let g, be the standard deviation of the x;s, and T be the mean of the z;s.

Tr;—I

e x; in standard units is

€T

e The correlation coefficient, then, is:

1 i — T i — Y
a2 () (5)
n o4 oy




Correlation and mean squared error

e Claim: Suppose that w, and w7 are the optimal intercept and slope for the
regression line. Then,

Ryq(wp, wi) = 073(1 —7?)

e That is, the mean squared error of the regression line's predictions and the
correlation coefficient, r, always satisfy the relationship above.

e Even if it's true, why do we care?

o In machine learning, we often use both the mean squared error and 72 to
compare the performances of different models.

o |f we can prove the above statement, we can show that finding models that

minimize mean squared error is equivalent to finding models that maximize

r2.



Proof that Ry, (w(, w]) = 032,(1 — 7%
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10



Exercise

Suppose we choose the model H(x) = w and squared loss.
What is the optimal model parameter, w;?
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Exercise

Suppose we choose the model H(x) = wyx and squared loss.
What is the optimal model parameter, w3?
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Comparing mean squared errors
e With both:

o the constant model, H(x) = h, and
o the simple linear regression model, H(z) = wy + wiz,

when we chose squared loss, we minimized mean squared error to find optimal
parameters:

Ru(H) = 23" (s — H(zy))?

n

e Which model minimizes mean squared error more?
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Comparing mean squared errors

Minutes to School

Predicted Commute Time = 142.25 - 8.19 * Departure Hour
Predicted Commute Time = 73.18
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MSE = — z"": (yi — H(z:))*

n 3

e The MSE of the best
simple linear regression
model is = 97

e The MSE of the best
constant model is ~ 167

e The simple linear
regression model is a
more flexible version of
the constant model.
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Wait... why do we need linear algebra?
e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to
find hypothesis functions that:
o Use multiple features (input variables).

o Are nonlinear in the features, e.g. H(z) = wy + w1z + wax?.

17



Wait... why do we need linear algebra?
e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to
find hypothesis functions that:
o Use multiple features (input variables).

o Are nonlinear in the features, e.g. H(z) = wy + w1z + wax?.
e Before we dive in, let's do a quick knowledge assessment.
e Go to https://forms.gle/LXBXydpsX8rtJQPz7

18


https://forms.gle/LXBXydpsX8rtJQPz7

Question 1: Norm
What is the length of v?
e A.8
e B.1/34
e C./38

e D .34

19



Question 2: Dot product
What is u - v?

o A 22

e B.24

e C.v680

> ia
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Question 3: Norm
Which of these is another expression for the length of v?
e AV
¢ B. V1?2
« C.VT-D
e D. v’

e E. More than one of the above.



Question 4: cos 6

3
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What is cos 6?
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Question 5: Orthogonality

Which of these vectors in R® orthogonal to:

STl
|

e D. All of the above
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Warning !
e We're not going to cover every single detail from your linear algebra course.

e There will be facts that you're expected to remember that we won't explicitly say.
o For example, if A and B are two matrices, then AB # BA.

o This is the kind of fact that we will only mention explicitly if it's directly
relevant to what we're studying.

o But you still need to know it, and it may come up in homework questions.

e We will review the topics that you really need to know well.

24
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Vectors
e A vectorin R" is an ordered collection of n numbers.

e We use lower-case letters with an arrow on top to represent vectors, and we
usually write vectors as columns.

STl
|

e Another way of writing the above vectoris v = [8, 3, —2, 5]T.

e Since v has four components, we say v € R*.
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The geometric interpretation of a vector

U1
5_
U2
e Avectorv= | . | Isan arrow to the point 4
; 3 }
Un
N ¢ . 21
(v1,va,...,v,) from the origin.
1_
e The length, or Ly norm, of v is:
0

3] = /2 + o3+ +o2

e A vector is sometimes described as an object with a
magnitude/length and direction.
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Dot product: coordinate definition

e The dot product of two vectors u and v in R" is
written as:

—

Uu-v=1u'v

e The computational definition of the dot product:

U-v=

n
U;V; = U1V1] + UV2T. .. TULRVUp

1=1

e The result is a scalar, i.e. a single number.
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Dot product: geometric definition
e The computational definition of the dot product:
n
U-v= Zuivi = U1V + UV +. .. +UnU,
i=1
e The geometric definition of the dot product:
u-v = [|lul||v]| cosf

where 0 is the angle between 4 and v.

e The two definitions are equivalent! This equivalence
allows us to find the angle 6 between two vectors.
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Orthogonal vectors

e Recall: cos90° = 0.

e Since u - v = ||ul|||v]| cos @, if the angle between two vectors is 90° , their dot
product is ||ul|||v]| cos 90° = 0.

e |If the angle between two vectors is 90° , we say they are perpendicular, or more
generally, orthogonal.

e Key idea:

two vectors are orthogonal <— u-v =0




Exercise

Find a non-zero vector in R? orthogonal to:

S
I
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Adding and scaling vectors

e The sum of two vectors & and v in R” is the 10
. . 8
element-wise sum of their components:
6
U1 + U1 4 if
U9 + V9 2
U+ v = 0
_2-
_Un —|_ vn_ —4'
. _6_
e |f cis a scalar, then: .
CU1 s o
~10-8 -6 -4 -2 0 2 4 6 8 10
CU9




Linear combinations

Let V1, Vo, ..., U4 all be vectors in R™.
A linear combination of vy, V9, .., U4 is any vector of the form:

a101 + asUa+. .. +ayv4

where a1, a9, ..., ag are all scalars.
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Span
e let vy, Uy, .., Vg all be vectors in R™.

e The span of v1, V9, ..., Vg4 is the set of all vectors that can be created using linear
combinations of those vectors.

e Formal definition:

—

span(vi, Vs, ...,0q) = {a1V1 + asUs+...+aqvq : a1,0a3,...,a, € R}
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Exercise

ﬁ 2 , -1 . 19]. S
Let v1 = [ 3] and let vy = [ A ] sy = [1] in span(vy, vs)

If so, write y as a linear combination of v and vs.
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Projecting onto a single vector

e Let x and 7/ be two vectors in R".

e The span of Z is the set of all
vectors of the form:

wT
where w € R is a scalar.

e Question: What vector in span(z)
Is closest to /7

e The vector in span(z) that is
closest to 1 is the

projection of 1 onto span(x).

X\
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Projection error

e Let e = 1 — wz be the projection
error: that is, the vector that connects
to span(z).
e Goal: Find the w that makes € as short

as possible.
o That is, minimize:

le]]
o Equivalently, minimize:
|y — wz]]

e |dea: To make e has short as possible,
it should be orthogonal to wz.

X\
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Minimizing projection error
e Goal: Find the w that makes € = 1/ — wx as short as possible.

* Idea: To make € as short as possible, it should be orthogonal to wz.

e Can we prove that making € orthogonal to wz minimizes ||€||?

39



Minimizing projection error

e Goal: Find the w that makes € = 1/ — wx as short as possible.

e Now we know that to minimize ||e||, € must be orthogonal to wz.

e Given this fact, how can we solve for w?

40



Orthogonal projection
e Question: What vector in span(z) is closest to /?
e Answer: It is the vector w*z, where:

T -

- =

L+ L

w* =

e Note that w* is the solution to a minimization problem, specifically, this one:
error(w) = ||€]| = ||y — w|]

e We call w*z the orthogonal projection of 1 onto span(z).
o Think of w*x as the "shadow" of

41



Exercise

B 5 - —1
Let a = and b = :
HESEEIN

What is the orthogonal projection of a@ onto span(b)?
Your answer should be of the form w*b, where w™* is a scalar.

—
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Moving to multiple dimensions
e Let's now consider three vectors, 7, "), and 2%, all in R™.
e Question: What vector in span(zZ"), 2(?)) is closest to 1?

o Vectors in spa,n(a_r:’(l), 5:’(2)) are of the form w17 + w272, where w1,
ws € R are scalars.

e Before trying to answer, let's watch »& this animation that Jack, one of our tutors,
made.

wy = —0.33, wy = +0.87

.f(l)



https://youtu.be/dJcbJKpYywk?si=giWFps-ixYDXBwzh
https://youtu.be/dJcbJKpYywk?si=giWFps-ixYDXBwzh
https://youtu.be/dJcbJKpYywk?si=giWFps-ixYDXBwzh

Agenda

e Spans and projections.
o Matrices.
e Spans and projections, revisited.

e Regression and linear algebra.



Minimizing projection error in multiple dimensions

—

e Question: What vector in span(Z"), 2(?)) is closest to 72

o That is, what vector minimizes ||€||, where:

€ =1y —wi W — wyz?®

e Answer: It's the vector such that wlcf(l) + 'wzi”@) is orthogonal to €.

e [ssue: Solving for wi and w» in the following equation is difficult:

(wlf(l) —+ w2£(2)) . ( — wli(l) — ’wgi_E)(z)) =0

A\ _J
VvV
—
e

44



Minimizing projection error in multiple dimensions

e |t's hard for us to solve for w; and ws In:

(wlf(l) —+ w2£(2)) . ( — wli(l) — ’wgi_E)(z)) =0

A\ _J
VvV
—
e

e Observation: All we really need is for (1) and #?) to individually be orthogonal to

—

€.

o That is, it's sufficient for € to be orthogonal to the spanning vectors
themselves.

e f21) .8 =0and 2 . € = 0, then:

45



Minimizing projection error in multiple dimensions

—

e Question: What vector in span(Z"), 2(?)) is closest to 72

e Answer: It's the vector such that wli’(l) + wzi’@) Is orthogonal to

g =Yy — wﬁm — W2£(2).

e Equivalently, it's the vector such that Z(!) and Z(? are both orthogonal to é:
Em.(_w@m_wﬁm)zo
5@.(_w@m_wﬁm):0

\ 4
WV
—
€

e This is a system of two equations, two unknowns (w1 and w3), but it still looks
difficult to solve.



Now what?

e We're looking for the scalars w; and w» that satisfy the following equations:
fm.(_w@m_wﬂ@)zo

5@.(_w@m_wﬁm):0

\- _J/
VvV
—
(&

e In this example, we just have two spanning vectors, 1) and 7 (?).

e |f we had any more, this system of equations would get extremely messy, extremely

quickly.

e |dea: Rewrite the above system of equations as a single equation, involving

matrix-vector products.

47
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Matrices
e An n X d matrix is a table of numbers with n rows and d columns.

e We use upper-case letters to denote matrices.

2
A — 5 8
-1 95 -3

e Since A has two rows and three columns, we say A € R?*3.

e Key idea: Think of a matrix as several column vectors, stacked next to each other.

49



Matrix addition and scalar multiplication

e We can add two matrices only if they have the same dimensions.

e Addition occurs elementwise:

258+123_3711
-1 5 -3 01 2| |-1 6 -1

e Scalar multiplication occurs elementwise, too:

2258_41016
-1 5 -3/ |[=-2 10 -6

50



Matrix-matrix multiplication

e Key idea: We can multiply matrices A and B if and only if:

# columns in A = # rows in B

e f Aisn x dand Bisd x p, then ABisn X p.

o Example: If A is as defined below, what is AT A?

A:258
-1 5 -3

51
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Question =
Answer at q.dsc40a.com

Assume A, B, and C are all matrices. Select the incorrect statement below.

e ANA(B+C)=AB+ AC.
 B. A(BC) = (AB)C.

e C. AB = BA.

e D.(A+ B)Y = AT + BT,
o £.(AB)T = BT AT,


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Matrix-vector multiplication

e Avectorv € R™ is a matrix with n rows and 1 column.

STl
I

e Suppose A € R™¥¢.
o What must the dimensions of v be in order for the product Av to be valid?

o What must the dimensions of ¥ be in order for the product v* A to be valid?

53



One view of matrix-vector multiplication

e One way of thinking about the product Av is that it is the dot product of v with
every row of A.

e Example: What is Av?

2
A — 5 8
-1 o5 -3

|
|
|
[

54



Another view of matrix-vector multiplication

e Another way of thinking about the product Av is that it is a linear combination of
the columns of A, using the weights in v.

e Example: What is Av?

-1 o5 -3

55



Matrix-vector products create linear combinations of columns!

e Key idea: It'll be very useful to think of the matrix-vector product Av as a linear
combination of the columns of 4, using the weights in v.

a1 ... Q14 U1
a2 ... Q94 .
A — vV =
K2 .. Qpd_ | Vd_
aii a1d
~ a9 a2d
Av = vy + + ... + vy




Isited
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Moving to multiple dimensions
e Let's now consider three vectors, 7, "), and 2%, all in R™.
e Question: What vector in span(zZ"), 2(?)) is closest to 1?

o That is, what values of w; and ws minimize ||€]| = || — w1 2" — wo

—

L

2
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Matrix-vector products create linear combinations of columns!

- -
71 = |5 72 =10
_3_ b 4 =

e Combining ") and Z?) into a single matrix gives:

X = |z0) Z@)] =




Matrix-vector products create linear combinations of columns!

2 ~1
71 = |5 72 =10
_3_ b 4 =

X = |z0) Z@)] =

L L i
w1

e Then, if w = [
Wwo

], linear combinations of Z(1) and Z(?) can be written as X .

 The span of the columns of X, or span(X), consists of all vectors that can be
written in the form Xw.



Minimizing projection error in multiple dimensions

B . 2 —1
X=|z0 Z@ ]| =15 0
NN RERES
e Goal: Find the vector @ = [w; ws]” such that ||€|| = ||/ — Xw@|| is minimized.

e As we've seen, w must be such that:

5@.(_w@m_wﬁm):0

5@.(_w@m_wﬁm):0

\

VO
e

e How can we use our knowledge of matrices to rewrite this system of equations

as a single equation?



Simplifying the system of equations, using matrices

L] v
X=|z0 Z@ ]| =15 0
B4

61



Simplifying the system of equations, using matrices

) v
X=|z0 Z@ ]| =15 0
o) b

1. w12 + wyZ?) can be written as X, so € = 1/ — X .

2. The condition that ¢ must be orthogonal to each column of X is equivalent to
condition that X’ ¢ = 0.
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The normal equations

] R
X=|z0 Z@ ]| =15 0
NN RERES
e Goal: Find the vector @ = [w; ws]” such that ||€|| = ||/ — Xw@|| is minimized.

e We now know that it is the vector w* such that:
X'e=0
X'y —Xw*)=0
X' - X' Xw* =0
— X' Xu* = X"

e The last statement is referred to as the normal equations.



The general solution to the normal equations
X ¢ R™

e Goal, in general: Find the vector w € R? such that €] = ||y — Xwl| is minimized.
e \We now know that it is the vector w* such that:
XTe=0
— X'XxXw*=x"

e Assuming X’ X is invertible, this is the vector:

'ITJ* _ (XTX)—lXT

o This is a big assumption, because it requires X’ X to be full rank.

o If X1 X is not full rank, then there are infinitely many solutions to the normal
equations, X' Xw* = X 1.
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What does it mean?

e Original question: What vector in span(z"), (%)) is closest to 1/?

Final answer: It is the vector Xw*, where:
,a*]* _ (XTX)—lXT

Revisiting our example:

] T
X=1|z0 Z@ ]| =15 0
B4

0.7289

Using a computer gives us w* = (X1 X) 1 X1 ~ .

1.6300

So, the vector in span(Z"), 2(?)) closest to 7/ is 0.72897 ") + 1.6300z(%).
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An optimization problem, solved
e We just used linear algebra to solve an optimization problem.
e Specifically, the function we minimized is:
error(w) = ||y — Xw||
o This is a function whose input is a vector, w, and whose output is a scalar!
e The input, w*, to error(w) that minimizes it is:
w* = (XTX)txt

e We're going to use this frequently!

6/



bra
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Wait... why do we need linear algebra?
e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to
find hypothesis functions that:
o Use multiple features (input variables).

o Are non-linear in the features, e.g. H(z) = wqo + w1z + wax?.

e Let's see if we can put what we've just learned to use.
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Simple linear regression, revisited

Minutes to School

140+

130

120+

110

100+

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Home Departure Time (AM)

T
10

Model: H(z) = wo + wix.
Loss function: (y; — H(x;))?.
To find wy and w7, we minimized

empirical risk, i.e. average loss:

() = 23" (s — H(zy))?

n

Observation: Ry, (wg, w1 ) kind of looks
like the formula for the norm of a vector,

3]l = /03 + 03 + ... + 2.
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Regression and linear algebra
Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual

values".

e The hypothesis vector is the vector i € R™ with components H (z;). This is the
vector of predicted values.

e The error vector is the vector € € R™ with components:
€; — — H(IBZ)
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Regression and linear algebra
Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values".

e The hypothesis vector is the vector i € R™ with components H (z;). This is the
vector of predicted values.

e The error vector is the vector € € R™ with components:

e; = vy, — H(z;)
e Key idea: We can rewrite the mean squared error of H as:
1 « o 1, .o 1 . =5
Ry(H) = — ;( — H(z:))" = el = — |y —

/3



The hypothesis vector

e The hypothesis vector is the vector b € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H(x) = wy + wix, the hypothesis vector can
be written:

Wy + W11

wWo + W1T2

=M
|
|

W + W1Ln_
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Rewriting the mean squared error

o Define the design matrix X € R™*? as:

L1
1 L9

X =
1 z,]

Wo

e Define the parameter vector w € R? to be w = [
w1

—

e Then, h = Xw, so the mean squared error becomes:

|

1., - S
Ry (H) = =7~ hl|* = |Rsq(w) =
n

1 ,
— || — Xw|*
n
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What's next?

e To find the optimal model parameters for simple linear regression, wy and wi, we
previously minimized:
1 <« 5
Ryq(wo, wy) = — Z( — (wo + w1;))

n =

e Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find w, and wj by minimizing:

S 1 S
Rea(®) = — |1 - X

e We've already solved this problem! Assuming X’ X is invertible, the best w0 is:

TB* _ (XTX)—lXT
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