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Recap: Simple linear regression and correlation.
Connections to related models.

Dot products.

Spans and projections.
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The dot product of two vectors  and  in  is
written as:

The computational definition of the dot product:

The result is a scalar, i.e. a single number.
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The computational definition of the dot product:

The geometric definition of the dot product:

where  is the angle between  and .

The two definitions are equivalent! This equivalence
allows us to find the angle  between two vectors.
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What is ?

A. 
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D. 
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Recall: º .

Since , if the angle between two vectors is º , their dot
product is º .

If the angle between two vectors is º , we say they are perpendicular, or more
generally, orthogonal.

Key idea:
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Find a non-zero vector in  orthogonal to:
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Spans and projections
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The sum of two vectors  and  in  is the
element-wise sum of their components:

If  is a scalar, then:
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Let , , ...,  all be vectors in .
A linear combination of , , ...,  is any vector of the form:

where , , ...,  are all scalars.
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Let , , ...,  all be vectors in .
The span of , , ...,  is the set of all vectors that can be created using linear
combinations of those vectors.

Formal definition:
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Let  and let . Is  in ?

If so, write  as a linear combination of  and .

36

1 /I

V they point" in different directions

w. +w = 5

(2) + [] = (i)
-

2w -W = 9 solre for We
->

-BV + 4wz = /
->

and we



Let  and  be two vectors in .
The span of  is the set of all
vectors of the form:

where  is a scalar.

Question: What vector in 
is closest to ?

The vector in  that is
closest to  is the __________
projection of  onto .         
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Let  be the projection
error: that is, the vector that connects

 to .
Goal: Find the  that makes  as short
as possible.

That is, minimize:

Equivalently, minimize:

Idea: To make  has short as possible,
it should be orthogonal to .

        

38

&

-
In

T optimal wo
is when e

is orthogonal
to



Goal: Find the  that makes  as short as possible.

Idea: To make  as short as possible, it should be orthogonal to .

Can we prove that making  orthogonal to  minimizes ?
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Goal: Find the  that makes  as short as possible.
Now we know that to minimize ,  must be orthogonal to .

Given this fact, how can we solve for ?
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Question: What vector in  is closest to ?

Answer: It is the vector , where:

Note that  is the solution to a minimization problem, specifically, this one:

We call  the orthogonal projection of  onto .
Think of  as the "shadow" of .
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Let  and .

What is the orthogonal projection of  onto ?
Your answer should be of the form , where  is a scalar.

42

Sa
--
&

w+= =
11. 5 +(9)

.2 -S + 18 13
I- =

-

P . (-12 + (g) 1 + 31 82

-

o
- ------

· the thosejetio
the spans isthe &

- o
13

-

w*= -

u- M 29



Let's now consider three vectors, , , and , all in .

Question: What vector in  is closest to ?

Vectors in  are of the form , where ,
 are scalars.

Before trying to answer, let's watch  this animation that Jack, one of our tutors,
made.
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