Lectures 8-10

Linear algebra: Dot products and Projections

DSC 40A, Fall 2024

Agenda

- Recap: Simple linear regression and correlation.
- Connections to related models.
- Dot products.
- Spans and projections.

Dot product: coordinate definition

- The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is $\vec{u} \cdot \vec{v} = \vec{u}^\mathsf{T} \vec{v}$ written as:
- The computational definition of the dot product:

$$
\vec{u}\cdot\vec{v}=\sum_{i=1}^nu_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n
$$

• The result is a scalar, i.e. a single number.

$$
\pi^2 \cdot \pi = 2.5 + 4.3 = 10 + 12 = 22
$$
 $ER \le scalar$
 $\pi^2 \cdot \pi = [2 \cdot 4] \cdot 5 = 10 + 12 = 22$ \int

Dot product: geometric definition

• The computational definition of the dot product:

$$
\vec{u} \cdot \vec{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n
$$

• The geometric definition of the dot product:

 $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$

where θ is the angle between \vec{u} and \vec{v} .

The two definitions are equivalent! This equivalence allows us to find the angle θ between two vectors. \hat{u} \vec{v} =22 (from previous slide) $COS\theta = \frac{\vec{W}\cdot\vec{V}}{||\vec{W}||\vec{V}||} = \frac{22}{\sqrt{20} \sqrt{34}} = \frac{11}{\sqrt{5}}$ ivalent! This equivalence

between two vectors.
 $\frac{11}{134}$ = $\frac{11}{\sqrt{5}\cdot\sqrt{34}} = \frac{11}{\sqrt{170}}$

Orthogonal vectors

- Recall: $\cos 90^\circ = 0$.
- Since $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$, if the angle between two vectors is 90° , their dot product is $\|\vec{u}\| \|\vec{v}\| \cos 90^\circ = 0$.

C

 7^{90}

 U angle U

For Perpendicular
Point
V

- If the angle between two vectors is 90° , we say they are perpendicular, or more generally, **orthogonal**.
- **Key idea**:

two vectors are **orthogonal** $\iff \vec{u} \cdot \vec{v} = 0$ "I't and only if

Exercise

Find a non-zero vector in \mathbb{R}^3 orthogonal to:

7.4nive *positive*

\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n
$$
\vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}
$$
\n

Spans and projections

Adding and scaling vectors

• The sum of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is the element-wise sum of their components:

$$
\vec{u}+\vec{v}=\begin{bmatrix}u_1+v_1\\u_2+v_2\\ \vdots\\u_n+v_n\end{bmatrix}\mathcal{C}\bigwedge^n
$$

• If c is a scalar, then:

$$
\mathsf{C} \hspace{0.2em} \mathsf{C} \hspace{0.1em} \mathsf{R}
$$

$$
c \vec{v} = \begin{bmatrix} c v_1 \\ c v_2 \\ \vdots \\ c v_n \end{bmatrix}
$$

Linear combinations

Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d all be vectors in \mathbb{R}^n . A linear combination of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d is any vector of the form: $a_1\vec{v}_1 + a_2\vec{v}_2 + \ldots + a_d\vec{v}_d \in \mathbb{R}^n$ 2, ..., a_d are all scalars.
 $\alpha_i \in \mathbb{R}$ Ar all 1si s λ $v_a = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $v_a = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$ $v_a = \begin{bmatrix} 0 \\ 9 \end{bmatrix}$ where $a_1, a_2, ..., a_d$ are all scalars. $V_1, V_2, V_3 \in \mathbb{R}^2$ $a_1V_1 + a_2V_2 + a_3V_3 \in R^2$ $a_1V_1 + a_2V_2 + a_3V_3 = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

Span

- Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d all be vectors in \mathbb{R}^n .
- The span of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

Exercise Let $\vec{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and let $\vec{v}_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$. Is $\vec{y} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$ in $\text{span}(\vec{v_1}, \vec{v_2})$?

If so, write \vec{y} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

$$
v_{1} \neq c v_{2}
$$
 they 'point'' in different directions
\n $w_{1} v_{1} + v_{2} v_{2} = g$
\n $\begin{bmatrix} 2v_{1} \\ -3v_{1} \end{bmatrix} + \begin{bmatrix} -v_{2} \\ y_{w_{2}} \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$
\n $\Rightarrow 2v_{1} - v_{2} = 9$
\n $\Rightarrow -3v_{1} + 4v_{2} = 1$

Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^n .
- The span of \vec{x} is the set of all vectors of the form:

$w\vec{x}$

where $w \in \mathbb{R}$ is a scalar.

- Question: What vector in $\text{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\text{span}(\vec{x})$ that is closest to \vec{y} is the <u>orthogonal</u> **projection of** \vec{y} **onto** $\text{span}(\vec{x})$. .

Projection error

- Let $\vec{e} = \vec{y} w\vec{x}$ be the projection **error**: that is, the vector that connects \vec{y} to span (\vec{x}) .
- Goal: Find the w that makes \vec{e} as short **as possible**.
	- \circ That is, minimize: Equivalently, minimize: $||\vec{e}||$ - $\begin{array}{ccc} |e_{n3}^{\text{th}} & \text{o}^{\text{th}} \\ |e_{n3}^{\text{th}} & \text{o}^{\text{th}} \end{array}$

 $\|\vec{y}-w\vec{x}\|$

• **Idea**: To make \vec{e} has short as possible, it should be **orthogonal to** $w\vec{x}$.

Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Idea: To make \vec{e} as short as possible, it should be orthogonal to $w\vec{x}$.

Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|$, \vec{e} must be orthogonal to $w\vec{x}$.
- Given this fact, how can we solve for w ?

 e^{2} orthogonal to \vec{x} $\vec{e} \perp \vec{x}$ => $w\vec{x} \cdot \vec{e}$ =0 $\nu X \cdot (\vec{y} - \omega x) = 0$ (dard by w) $= \frac{\sqrt{1-x}y}{\sqrt{x}x} = \frac{\sqrt{x} \cdot y}{\sqrt{x}y}$ $\chi^2(y-w\bar{x})=0$ $\ddot{x}\cdot\ddot{y}-\ddot{x}\cdot(\nu\ddot{x})=0$
 $\ddot{x}\cdot\ddot{y}=\nu(\ddot{x}\cdot\ddot{x})$

Orthogonal projection

- Question: What vector in $\text{span}(\vec{x})$ is closest to \vec{y} ?
- Answer: It is the vector $w^*\vec{x}$, where:

$$
w^* = \frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}}
$$

• Note that w^* is the solution to a minimization problem, specifically, this one:

error(w) =
$$
||\vec{e}|| = ||\vec{y} - w\vec{x}||
$$

\n**•** We call $w^*\vec{x}$ the **orthogonal projection of** \vec{y} onto $\text{span}(\vec{x})$.
\n**•** Think of $w^*\vec{x}$ as the "shadow" of \vec{y} .

 $W^{\sharp} \times \in \mathbb{R}^{n}$

Exercise

$$
\text{Let } \vec{a} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} -1 \\ 9 \end{bmatrix}.
$$

$$
W^{\frac{1}{2}} = \frac{\frac{1}{10} \cdot \frac{1}{10}}{\frac{1}{10} \cdot \frac{1}{10}} = \frac{(-1) \cdot 5 + (9) \cdot 2}{(-1)^2 + (9)^2} = \frac{-5 + 18}{1 + 81} = \frac{13}{82}
$$

$$
= \frac{9 - t \cdot 1}{2} = \frac{13}{10} = \
$$

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\text{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?

Vectors in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ are of the form $w_1\vec{x}^{(1)}+w_2\vec{x}^{(2)}$, where w_1 , $w_2 \in \mathbb{R}$ are scalars.), where w_1
a previour

Before trying to answer, let's watch **& this animation that Jack, a previour tutor**, **made**.

