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-> HW2 due tomorrow

- HWT grades released later to day



Question: What vector in  is closest to ?

That is, what vector minimizes , where:

Answer: It's the vector such that  is orthogonal to .

Issue: Solving for  and  in the following equation is difficult:
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It's hard for us to solve for  and  in:

Observation: All we really need is for  and  to individually be orthogonal to
.

That is, it's sufficient for  to be orthogonal to the spanning vectors
themselves.

If  and , then:
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Question: What vector in  is closest to ?

Answer: It's the vector such that  is orthogonal to
.

Equivalently, it's the vector such that  and  are both orthogonal to :

This is a system of two equations, two unknowns (  and ), but it still looks
difficult to solve.
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We're looking for the scalars  and  that satisfy the following equations:

In this example, we just have two spanning vectors,  and .

If we had any more, this system of equations would get extremely messy, extremely
quickly.

Idea: Rewrite the above system of equations as a single equation, involving
matrix-vector products.
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Matrices
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An  matrix is a table of numbers with  rows and  columns.

We use upper-case letters to denote matrices.

Since  has two rows and three columns, we say .

Key idea: Think of a matrix as several column vectors, stacked next to each other.
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We can add two matrices only if they have the same dimensions.

Addition occurs elementwise:

Scalar multiplication occurs elementwise, too:
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Key idea: We can multiply matrices  and  if and only if:

If  is  and  is , then  is .

Example: If  is as defined below, what is ?
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Answer at q.dsc40a.com

Assume , , and  are all matrices. Select the incorrect statement below.

A. .
B. .

C. .

D. .

E. .
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Some Matrix Properties

! Multiplication is Distributive:

A(B+ C) = AB+ AC

! Multiplication is Associative:

(AB)C = A(BC)

! Multiplication is Not Commutative:

AB %= BA

! Transpose of Sum:

(A+ B)T = AT + BT

! Transpose of Product:

(AB)T = BTAT



A vector  is a matrix with  rows and 1 column.

Suppose .
What must the dimensions of  be in order for the product  to be valid?

What must the dimensions of  be in order for the product  to be valid?
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One way of thinking about the product  is that it is the dot product of  with
every row of .

Example: What is ?
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Another way of thinking about the product  is that it is a linear combination of
the columns of , using the weights in .

Example: What is ?
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Key idea: It'll be very useful to think of the matrix-vector product  as a linear
combination of the columns of , using the weights in .
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Spans and projections, revisited
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Let's now consider three vectors, , , and , all in .

Question: What vector in  is closest to ?

That is, what values of  and  minimize  = ?
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Combining  and  into a single matrix gives:
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Combining  and  into a single matrix gives:

Then, if , linear combinations of  and  can be written as .

The span of the columns of , or , consists of all vectors that can be
written in the form .
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Goal: Find the vector  such that  is minimized.

As we've seen,  must be such that:

How can we use our knowledge of matrices to rewrite this system of equations
as a single equation?
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1.  can be written as , so .

2. The condition that  must be orthogonal to each column of  is equivalent to
condition that .
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Goal: Find the vector  such that  is minimized.

We now know that it is the vector  such that:

The last statement is referred to as the normal equations.
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Goal, in general: Find the vector  such that  is minimized.

We now know that it is the vector  such that:

Assuming  is invertible, this is the vector:

This is a big assumption, because it requires  to be full rank.

If  is not full rank, then there are infinitely many solutions to the normal
equations, .
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Original question: What vector in  is closest to ?

Final answer: It is the vector , where:

Revisiting our example:

Using a computer gives us .

So, the vector in  closest to  is .
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We just used linear algebra to solve an optimization problem.

Specifically, the function we minimized is:

This is a function whose input is a vector, , and whose output is a scalar!

The input, , to  that minimizes it is:

We're going to use this frequently!
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Regression and linear algebra
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Soon, we'll want to make predictions using more than one feature.
Example: Predicting commute times using departure hour and temperature.

Thinking about linear regression in terms of matrices and vectors will allow us to
find hypothesis functions that:

Use multiple features (input variables).

Are non-linear in the features, e.g. .
Let's see if we can put what we've just learned to use.
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Model: .
Loss function: .

To find  and , we minimized
empirical risk, i.e. average loss:

Observation:  kind of looks
like the formula for the norm of a vector,

.
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Let's define a few new terms:

The observation vector is the vector . This is the vector of observed "actual
values".

The hypothesis vector is the vector  with components . This is the
vector of predicted values.

The error vector is the vector  with components:
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Let's define a few new terms:

The observation vector is the vector . This is the vector of observed "actual
values".

The hypothesis vector is the vector  with components . This is the
vector of predicted values.

The error vector is the vector  with components:

Key idea: We can rewrite the mean squared error of  as:
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The hypothesis vector is the vector  with components . This is the
vector of predicted values.

For the linear hypothesis function , the hypothesis vector can
be written:
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Define the design matrix  as:

Define the parameter vector  to be .

Then, , so the mean squared error becomes:
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To find the optimal model parameters for simple linear regression,  and , we
previously minimized:

Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find  and  by minimizing:

We've already solved this problem! Assuming  is invertible, the best  is:
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