Lecture 11

Regression and Linear Algebra

DSC 40A, Fall 2024



Announcements

e Homework 3 is due on Friday, October 25th.

e Homework 1 scores are available on Gradescope.
o Regrade requests are due tonight.

e The Midterm Exam is on Monday, Nov 4th in class.



Agenda

e Regression and linear algebra.
e Finding the optimal parameter vector
o by minimizing the projection error (linear algebra).

o by minimizing empirical risk (multivariate calculus).



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/

bra




Wait... why do we need linear algebra?
e We want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to

find hypothesis functions that:
o Use multiple features (input variables), e.q., H(z) = wg + w1z + wox(?),
o Are non-linear in the features, e.g., H(z) = wg + w1z + waz?.

e |et's see if we can put what we learned last week to use.



Simple linear regression, revisited

Minutes to School
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Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Home Departure Time (AM)

T
10

Model: H(z) = wo + wix.
Loss function: (y; — H(x;))?.
To find wy and w7, we minimized

empirical risk, i.e. average loss:

() = 23" (s — H(zy))?

n

Observation: Ry, (wg, w1 ) kind of looks
like the formula for the norm of a vector,

3]l = /03 + 03 + ... + 2.




Regression and linear algebra
Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed values.

e The hypothesis vector is the vector b € R™ with components H (z;). This is the
vector of predicted values.

e The error vector is the vector e € R™ with components:
€; — — H(xz)

This is the vector of signed errors.



Regression and linear algebra
Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed values.

e The hypothesis vector is the vector b € R™ with components H (z;). This is the
vector of predicted values.

e The error vector is the vector € € R™ with components: e; = 1, — H(x;)

e Key idea: We can rewrite the mean squared error of H as:

1 & 1 <& 1, 1 o
R(H) =~ (v —H(z)) == e’=—|e|* =~y - |’
n n

n 4 n 4



The hypothesis vector

e The hypothesis vector is the vector h € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H(x) = wy + wix, the hypothesis vector can
be written:

Wy + W11

wo + W12

<
|
|

W + W1Ln_



Rewriting the mean squared error

o Define the design matrix X € R™*? as:

_ 2131-
1 L9
X =
1 z,]

. — 2 — wO
e Define the parameter vector w € R“ to be w = [
w1

—

e Then, h = Xw, so the mean squared error becomes:

|

1 - . 1
Ry (H) = —||v - hH2 — | Ryq(w) = —
n n
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Minimizing mean squared error, again

e To find the optimal model parameters for simple linear regression, wy and wi, we
previously minimized:
1 <« 5
qu(’lU(), wl) — E Z( — (’UJ() + wlxz))
1=1
e Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find w( and wj by finding the w* = [wy w*]" that minimizes:

S 1 S
Rea(®) = — |1 - X

* Do we already know the w* that minimizes Ry, ()?
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An optimization problem we've seen before

*

e The optimal parameter vector, @W* = [wf w?]", is the one that minimizes:
Req(i@) = — [} — Xa|* = — ]

e The minimizer of ||€|| is the same as the minimizer of Ryy(w)!

w* = arg mjn qu — arg mjn “g“

w w

e Last week we found that the vector in the span of the columns of X that is closest
to 1 is the vector Xw such that ||e|| = ||y — Xw|| is minimized.
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The modeling recipe

1. Choose a model.

2. Choose a loss function.

e=y—[1 z]'w
3. Minimize average loss to find optimal model parameters.

w w w

1 1, .
w* = argmin Ry (w) = arg min {—H — X?I}HZ} — arg min {—HeH2}
— — n 1) n



An optimization problem we've seen before

e Key idea: Find w € R? such that the error vector, € = 1 — X, is orthogonal to

the columns of X.

o Why? Because this will make the error vector as short as possible.

e The w* that accomplishes this satisfies:
X'e=0
e Why? Because X '€ contains the dot products of each column in X with €. If these
are all 0, then € is orthogonal to every column of X!

xTz_ |~V —|z_|1¢
_ZT_ 2T
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The normal equations

e Key idea: Find w € R? such that the error vector, € = 1 — X, is orthogonal to
the columns of X.

e The w* that accomplishes this satisfies: ¢ Assuming X’ X is invertible, this is the
xTz =0 vector:

X () — Xw*) =0 @ = (XTX) 1 x7

X'y — X" Xw* =0

o This is a big assumption, because
* The normal equations: it requires X’ X to be full rank.

— X' Xu*=X" o If X1 X is not full rank, then there
are infinitely many solutions to the
normal equations.
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An optimization problem, solved

We just used linear algebra to solve an optimization problem.
Specifically, the function we minimized is:
error(w) = ||y — Xw||

The input, w*, to error(w) that minimizes it is one that satisfies the normal
equations:

X' Xw* = X"
If X7 X is invertible, then the unique solution is:
o — (XTX)—lXT
Key idea: w* = (X' X) 1 X" also minimizes Ry, (w)!

We're going to use this frequently!
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Alternative solution

e Our goal is to find the vector w that minimize mean squared error:
Reg(0) = = |1 — X

e Strategy: calculus

e Problem: This is a function of a vector. What does it even mean to take the
derivative of Rsy(w) with respect to a vector w?

18



A function of a vector

e Solution: A function of a vector is really just a function of multiple variables, which
are the components of the vector. In other words,

—

qu(’IU) — qu('wo, Wiy .. ,wd)

where wy, w1, ..., wy are the entries of the vector w.
In our case, w has just two components, wg and w. We'll be more general since
we eventually want to use prediction rules with even more parameters.

e We know how to deal with derivatives of multivariable functions: the gradient!
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The gradient with respect to a vector

e The gradient of Ry, (w) with respect to w is the vector of partial derivatives:

- 8qu -
B’wo

ORgq
dqu ow;

OR.,
| Owg _

where wy, w1, ..., wy are the entries of the vector w.
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Goal

e We want to minimize the mean squared error:
S 1 S
Rag () = = [} — X

e Strategy:

1. Compute the gradient of Ry, (w).
2. Set it to zero and solve for w.

o The result is the optimal parameter vector w*.

e |et's start by rewriting the mean squared error in a way that will make it easier to
compute its gradient.

21



T

Question =

Answer at q.dsc40a.com

Which of the following is equivalent to Ry, (w) =

A) = ( — Xw) - (Xw — vy)

8) L/ (5 — X) - (y - Xu)
O 4~ Xu)"(y - Xi)
D) —(§ — Xw)(y — Xw)”

=y — Xa||% 7
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Rewriting mean squared error

Remider: |(AB)Y = B A”

Ryy(W) = |7 — Xw||* =

23
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Compute the gradient
dRy,  d (1

dw  do \ n

_1(d
n \ dw

(i
)

—ox?t
d

dw

w4 w' X TXu?))
(2X" - w) + 4 (W' X" Xw)
dw

)
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T

Question =
Answer at g.dsc40a.com

Which of the following is %(@’ - Y)?
Ay y

B. 2y

C. 1

D.0
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Compute the gradient

deq _ d—)(l( . _2XT —|—’UJTXTX'UJ))
dw du \n
1 d d d
_ ) = —(2XT0 -0 _*TXTXq)
n((MJ( ) - L (2X7) @) + = (@ X7 Xa)

d (7.7) _
o % (y . y) f—
o Why? g is a constant with respect to w.

. L (2XT* *):2XT

o Why? In groupwork today you will show d - L =
¢ —= (_’TXTXw) = 2X T Xw.

o Why? You will prove in homework 4.

Q
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Compute the gradient

deq — dﬁ(l( Ly —2X7T -1TJ—|—'LTJTXTX’LTJ))
dw dw \ n
1 d d d
— . - 2XT . 13 - —"TXTX—*
(= (0) - 22 (X7 @) + — (a7 X"Xa)

n

! (—2X" )+ 2X" Xw)

)
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The normal equations (again)

e To minimize Ryq(w), set its gradient to zero and solve for w:
—2X" 42X " Xw =0
— X' Xw=X"
e We have seen this system of equations in matrix form before: the normal
equations.

e If X X isinvertible, the solution is

u—»‘}* _ (XTX)—lXT
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The optimal parameter vector, w*

e To find the optimal model parameters for simple linear regression, wy and wi, we
previously minimized Rsq(wo, w1) = = > (v; — (wo + w1z;))?.

o We found, using calculus, that:

- > i (®i — ) (yi — 7) Ty

> ici (i —T)? o |

" lwy =Y — wiT|

e Another way of finding optimal model parameters for simple linear regression is to

find the w* that minimizes Ry (w) = < ||y — Xw||>.

o The minimizer, if X1 X is invertible, is the vector |w* = (XTX)_lXT

e These formulas are equivalent!



Summary: Regression and linear algebra (Solution 1)

o Define the design matrix X € R™*?, observation vector , and parameter
vector W € R? as:
1 o
X = 1 " W = [w°]
Do w1
1 z,]

—

e How do we make the hypothesis vector, h = X, as close to 7 as possible? Use
the parameter vector w*:

TTJ* _ (XTX)—lXT

e We chose @* so that h* = X@* is the projection of i, onto the span of the
columns of the design matrix, X and minimized the length of the projection error

lell = [lv — Xwl|. g



Summary: Regression and linear algebra (Solution 2)

o Define the design matrix X € R™*?, observation vector , and parameter
vector W € R? as:

1 2
1 L9 . Wy
X — . . w —=
. . w]_
1 z,
e How do we minimize the mean squared error Ry, (w) = + ||y — Xw||? ? Using

calculus the optimal paramter vector w* is:

’lf}* _ (XTX)—lXT
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Roadmap

e Next class, we'll present a more general framing of the multiple linear regression
model, that uses d features instead of just two.

e We'll also look at how we can engineer new features using existing features.

o e.g. How can we fit a hypothesis function of the form
H(z) = wy + wiz + woz??
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