Lecture 11

Regression and Linear Algebra

DSC 40A, Fall 2024



Announcements

e Homework 3 is due on Friday, October 25th.

e Homework 1 scores are available on Gradescope.
o Regrade requests are due tonight.

e The Midterm Exam is on Monday, Nov 4th in class.



Agenda

e Regression and linear algebra.
e Finding the optimal parameter vector
o by minimizing the projection error (linear algebra).

o by minimizing empirical risk (multivariate calculus).



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.
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Wait... why do we need linear algebra?
e We want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to

find hypothesis functions that:
o Use multiple features (input variables), e.q., H(z) = wg + w1z + wox(?),
o Are non-linear in the features, e.g., H(z) = wq + w1z + waz?.

e |et's see if we can put what we learned last week to use.



Simple linear regression, revisited

e Model: H(z) = wy + wi.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

e Loss function: (y; — H(z;))>

e To find wy and w3, we minimized
o] _ empirical risk, i.e. average loss:
%8, 100 ® Nd:d;‘
2 1 & L PR o

Ry(H) =~ (yi — H(z))
— IAJ\\\J 'o..('_;
e Observation: Ry (wg, w;) kind of looks

; ; ; ; like the formula for the norm of a vector,

Home Departure Time (AM) .
9] = A/vZ 4+ v5 + ...+ vl




Regression and linear algebra
Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed values.

e The hypothesis vector is the vector b € R™ with components H (z;). This is the
vector of predicted values.

e The error vector is the vector € € R™ with components: -~
)
€; — — H(azz) e -~ - )\
This is the vector of signed errors. _ H( )\
— HEDY TW mdes ) e, = Y4~ "4
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Regression and linear algebra
Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed values.

e The hypothesis vector is the vector b € R™ with components H (z;). This is the
vector of predicted values.

e The error vector is the vector € € R™ with components: e; = 1, — H(x;)

e Key idea: We can rewrite the mean squared error of H as:

1 <& 1 < 1, 1 o
R(H) =~ (v —H(z)) == e’=—|e|* =~y —h|’
n n

n n
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The hypothesis vector

e The hypothesis vector is the vector h € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H(x) = wy + wix, the hypothesis vector can

be written:
wo + wixq | 8 4 X, 1 X
- wo +.’w1a:2 _ 1 )‘1 [ o] - : v, + )51 v,
ﬁ‘;‘::?ﬁ Wy + W1Ty | L A X B ‘4\ 1 ;J L Xe
X - Ae.ri;hﬂ ode | \,
he =1 worbax; Matrix paranier: T allohes
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Rewriting the mean squared error

o Define the design matrix X € R™*? as:

1z
1 L9
X =
1 x,] l
A ofe
e Define the parameter vector w € R to be w = [ ]
WS wlercep
e Then, h = Xw, so the mean squared error becomes:
Reg(H) = 2|7 — B2 Rey(@) = — i — X
wW(H) =~ = h|> = |Ryq(@) = — [l — X
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Minimizing mean squared error, again

e To find the optimal model parameters for simple linear regression, wy and wi, we
previously minimized:
1 <« 5
qu(’lU(), wl) — E Z( — (’UJ() + wlxz))
1=1
e Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find w( and wj by finding the w* = [wy w*]" that minimizes:

S 1 S
Rea(®) = — |1 — X3

* Do we already know the w* that minimizes Ry, ()?
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An optimization problem we've seen before

e The optimal parameter vector, @W* = [wf w?]", is the one that minimizes:

o1 B 1
Ryq(@0) = — || — Xw||* = —||é||*
n n

e The minimizer of ||€|| is the same as the minimizer of Ryy(w)!

w* = arg mjn qu — arg mjn “g“

w w

e Last week we found that the vector in the span of the columns of X that is closest
to 1 is the vector Xw such that ||e|| = ||y — Xw|| is minimized.

|

|

o
e

%A (1)
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The modeling recipe

1. Choose a model.

Hz)=[1 2z]"®=wo+wz LR

2. Choose a loss function.

1 T T
diUW‘UA los; e:( — 1 x| ’w)
3. Minimize average loss to find optimal model parameters.

1 1, .
w* = argmin Ry (w) = arg min {—H — X?I}HZ} — arg min {—HeH2}
— — n 1) n

w w w
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An optimization problem we've seen before o,k c;:fay :
O/t heY0ns
e Key idea: Find w € R? such that the error vector, € = 1 — X, is orthogonal to

the columns of X.
o Why? Because this will make the error vector as short as possible.
— . . . e - X ) =
e The w* that accomplishes this satisfies: ~ )(‘ ( W ) =0
X'e=0
e Why? Because X '€ contains the dot products of each column in X with €. If these
are all 0, then € is orthogonal to every column of X!

r-;\ x4 XTé» _ . 1T_ g _ 1Té’
XU AT - —#T-|  |#7e
i . Ao FNo\u(" of ]
Ll K v it Ehe vous 14 4., 1}_.,_
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The normal equations

e Key idea: Find w € R? such that the error vector, € = 1 — X, is orthogonal to
the columns of X.

e The w* that accomplishes this satisfies: ¢ Assuming X’ X is invertible, this is the

S

xTz =0 vector:
X7 - XTX%* =0 “’
o This is a big assumption, becaus% s
* The normal equations: it requires X X to be full rank, 2"

Vinenrly

o If X1 X is not fill rank, then thereh‘u“

— X' Xuw*
M/)g/ j are infinitely many solutions to the
W ‘(X XYX normal equations.

Nt Gl ek
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An optimization problem, solved
e We just used linear algebra to solve an optimization problem. (ﬂ 0 Ca C“'“‘)
e Specifically, the function we minimized is:
error(w) = ||y — Xw||

e The input, w*, to error(w) that minimizes it is one that satisfies the normal
equations:

X' Xu* = x*
If X7 X is invertible, then the unique solution is:
o — (XTX)—lXT
¢ Key idea: w* = (X' X) 1 X’ also minimizes Ry, (w)!

e We're going to use this frequently!
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Alternative solution

e QOur goal is to find the vector w that minimize mean squared error:
Reg () = = |1 — X

e Strategy: calculus

e Problem: This is a function of a vector. What does it even mean to take the
derivative of Rgy(w) with respect to a vector w?
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A function of a vector

e Solution: A function of a vector is really just a function of multiple variables, which

are the components of the vector. In other words, \g/L
RSQ(,&;) — qu(wo,wl,. ,wd)é\?\ \,\/ - : é(@
Wy

where wy, w1, ..., wy are the entries of the vector w.
In our case, w has just two components, wg and w. We'll be more general since
we eventually want to use prediction rules with even more parameters.

e We know how to deal with derivatives of multivariable functions: the gradient!

\
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The gradient with respect to a vector

e The gradient of Ry, (w) with respect to w is the vector of partial derivatives:

_ [ ORgq
R,
317 B dRSq Bwslq A
0 — Vﬂ}RSCI(w) — di — : é /@
QJ L . sq
LLE) (R k3

\_ ')\:/4
where wgy, w1, ..., wq are the entries of the vector w.



Goal

e We want to minimize the mean squared error:  o¢ & fuunction ol vector '
Reg(0) = = |1 — X

e Strategy:

1. Compute the gradient of Ry, (w).
2. Set it to zero and solve for w.

o The result is the optimal parameter vector w*.

e |et's start by rewriting the mean squared error in a way that will make it easier to
compute its gradient.
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Answer at g.dsc40a.com

Which of the following is equivalent to Ry (W) = = ||y — Xw||* ?
A) 7 (§ — X) - (X — y)

5) +/(5 - X@) - (y - x@) = 1

Or(y— Xu)l(y—Xw) S = ,/{T<8) —\(btfo>7 g - J>
D)—(y—Xw)E%/—Xw) - L (g-X\J (4~ %)
( )
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Rewriting mean squared error

Remider: | (AB)” = BTA”|  A(R)= AB)C

Ryy(@) = |l — Xu||* =

= Ayms i) (‘TX’)5’+'»’J'X X@)-

/ u"()(

T () v (X9
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Compute the gradient
dRy,  d (1

dw  do \ n

_1(d
n \ dw

(i
(v-9)

—ox 7t
d

dw

w4 w' X TXu?))
(2X" - w) + 4 (W' X" Xw)
dw

)
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Question =

Answer at g.dsc40a.com

. ) . d (= =
Which of the following is %(y - Y)?
AY-y
B. 2y
C. 1

o> G doest depedk o v
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Compute the gradient

deq — dﬁ(l( Ly —2X7T -1TJ—|—'LTJTXTX’LTJ))
dw dw \ N
= (557D - g5 (X700 + o (@7 x7x) )
n \ dw dw DJ{( dw

o Why? g is a constant with respect to w.
o A (oxT>. 7)) — T
e (2X Y w) =2X"y.
o Why? In groupwork today you will show

o L (wTXTXw) =2XTXw.

dw

o Why? You will prove in homework 4.

d —= — —
—a--Tr — Q.
dx
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Compute the gradient
dRy,  d (1

d  d©

1/ d d d
_ — = (2X T . @) + — *TXTX*)
n(d@V) 15 w) + 4 (@ X X0)

— (- —2Xx" -”LTJ—I—’ITJTXTX’ITJ))




The normal equations (again)

e To minimize Ryq(w), set its gradient to zero and solve for w:
—2X" 42X " Xw =0
— X' Xw=X"
e We have seen this system of equations in matrix form before: the normal
equations.

e If X X isinvertible, the solution is

u—»‘}* _ (XTX)—lXT
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The optimal parameter vector, w*

e To find the optimal model parameters for simple linear regression, wy and wi, we
previously minimized Rsq(wo, w1) = = > (v; — (wo + wiz;))?.

o We found, using calculus, that:

- > s (@i — ) (yi — 7) Ty

> ici (i —T)? o |

" lwy =Y — wiT|

e Another way of finding optimal model parameters for simple linear regression is to

find the w* that minimizes Ry (w) = < ||y — Xw||>.

o The minimizer, if X1 X is invertible, is the vector |w* = (XTX)_lXT

e These formulas are equivalent!



Summary: Regression and linear algebra (Solution 1)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:
1 o
X = 1 " W = [w°]
S w1
1 z,]

—

e How do we make the hypothesis vector, h = X, as close to 7 as possible? Use
the parameter vector w*:

TTJ* _ (XTX)—lXT

e We chose @* so that h* = X" is the projection of i, onto the span of the
columns of the design matrix, X and minimized the length of the projection error

lel| = [lv — Xwl|. g



Summary: Regression and linear algebra (Solution 2)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:

i
1 L9 . Wy
X — . . w =
. . w]_
1 z,
e How do we minimize the mean squared error Ry, (w) = + || — Xw||? ? Using

calculus the optimal paramter vector w* is:

’ITJ* _ (XTX)—lXT
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Roadmap

e Next class, we'll present a more general framing of the multiple linear regression
model, that uses d features instead of just two.

e We'll also look at how we can engineer new features using existing features.

o e.g. How can we fit a hypothesis function of the form
H(z) = wy + w1z + woz??
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