Lecture 13 Continued

Feature engineering and transformations

DSC 40A, Fall 2024

The Midterm Exam is on Monday, Nov 4th!

- Randomized seat assignment is in the homework look up your seat.
- 50 minutes, on paper, no calculators or electronics.
 - You are allowed to bring one two-sided page of notes.
- Content: Lectures 1-13, Homeworks 1-4, Groupworks 1-4.
- Prepare by practicing with old exam problems at practice.dsc40a.com.
 - Problems are sorted by topic!

How do we fit hypothesis functions that aren't linear in the parameters?

• Suppose we want to fit the hypothesis function:

 $H(x)=w_0e^{w_1x}$

- This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.
- **Possible solution**: Try to apply a **transformation**.

Transformations

• Question: Can we re-write $H(x) = w_0 e^{w_1 x}$ as a hypothesis function that is linear in the parameters?

Transformations

- Solution: Create a new hypothesis function, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
- This hypothesis function is related to H(x) by the relationship $T(x) = \log H(x)$.
- \vec{b} is related to \vec{w} by $b_0 = \log w_0$ and $b_1 = w_1$.

• Our new observation vector, \vec{z} , is $\begin{bmatrix} \log y_1 \\ \log y_2 \\ \\ \\ \\ \log y_n \end{bmatrix}$.

- $T(x) = b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

22

Once again, let's try it out! Follow along in this notebook.

Non-linear hypothesis functions in general

- Sometimes, it's just not possible to transform a hypothesis function to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - $\circ\;$ For example, $H(x)=w_0\sin(w_1x)$ can't be transformed to be linear.
 - But, there are other methods of minimizing mean squared error:

$$R_{
m sq}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i - w_0 \sin(w_1 x))^2$$

- One method: **gradient descent**, the topic of the next lecture!
- Hypothesis functions that are linear in the parameters are much easier to work with.

Answer at q.dsc40a.com

Which hypothesis function is **not** linear in the parameters?

- A. $H(ec{x}) = w_1(x^{(1)}x^{(2)}) + rac{w_2}{x^{(1)}} \mathrm{sin}\left(x^{(2)}
 ight)$
- B. $H(ec{x}) = 2^{w_1} x^{(1)}$
- C. $H(\vec{x}) = \vec{w} \cdot \operatorname{Aug}(\vec{x})$
- D. $H(ec{x}) = w_1 \cos(x^{(1)}) + w_2 2^{x^{(2)} \log x^{(3)}}$
- E. More than one of the above.

Roadmap

- This is the end of the content that's in scope for the Midterm Exam.
- Now, we'll introduce **gradient descent**, a technique for minimizing functions that can't be minimized directly using calculus or linear algebra.
- After the Midterm Exam, we'll:
 - Switch gears to **probability**.

Lecture 14

Gradient Descent

1

DSC 40A, Fall 2024

Agenda

- Minimizing functions using gradient descent.
- Convexity.
- More examples.
 - \circ Huber loss.
 - Gradient descent with multiple variables.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Electure Questions"
link in the top right corner of dsc40a.com.

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Minimizing functions using gradient descent

Minimizing empirical risk

- Repeatedly, we've been tasked with **minimizing** the value of empirical risk functions.
 - Why? To help us find the **best** model parameters, h^* or w^* , which help us make the **best** predictions!
- We've minimized empirical risk functions in various ways.

$$egin{aligned} &\circ \ R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2 \ &\circ \ R_{ ext{abs}}(w_0, w_1) = rac{1}{n} \sum_{i=1}^n |y_i - (w_0 + w_1 x)| \ &\circ \ R_{ ext{sq}}(ec w) = rac{1}{n} \|ec y - X ec w\|^2 \end{aligned}$$

Minimizing arbitrary functions

- Assume f(t) is some **differentiable** single-variable function.
- When tasked with minimizing f(t), our general strategy has been to:

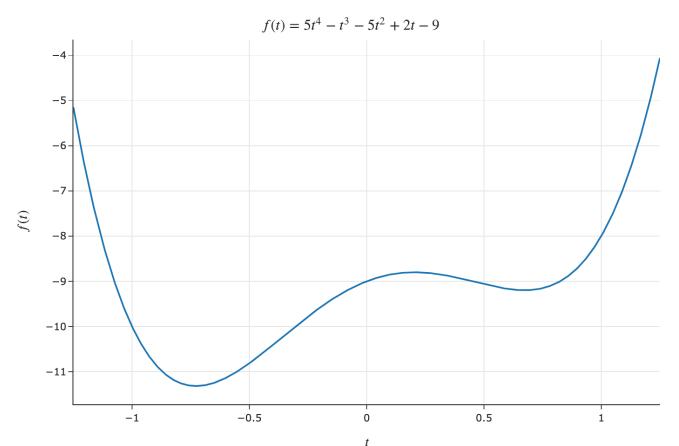
 Find df/dt(t), the derivative of f.
 Find the input t* such that df/dt(t*) = 0.
- However, there are cases where we can find $\frac{df}{dt}(t)$, but it is either difficult or impossible to solve $\frac{df}{dt}(t^*) = 0$.

$$f(t) = 5t^4 - t^3 - 5t^2 + 2t - 9$$

• Then what?

What does the derivative of a function tell us?

- Goal: Given a differentiable function f(t), find the input t^* that minimizes f(t).
- What does $\frac{d}{dt}f(t)$ mean?



Let's go hiking!

- Further, suppose it's really cloudy
 meaning you can only see a few feet around you.
- How would you get to the bottom?

