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Minimizing functions using gradient descent.
Convexity.

More examples.
Huber loss.
Gradient descent with multiple variables.
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Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!
If the direct link doesn't work, click the "  Lecture Questions"

link in the top right corner of dsc40a.com.

3

https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/


Minimizing functions using gradient descent
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Goal: Given a differentiable function , find the input  that minimizes .
What does  mean?
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Suppose you're at the top of a
mountain  and need to get to
the bottom.

Further, suppose it's really cloudy
, meaning you can only see a

few feet around you.

How would you get to the
bottom?

6



Suppose we're given an initial
guess for a value of  that
minimizes .

If the slope of the tangent line
at  is positive :

Increasing  increases .
This means the minimum
must be to the left of the
point .

Solution: Decrease  .
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Suppose we're given an initial
guess for a value of  that
minimizes .

If the slope of the tangent line
at  is negative :

Increasing  decreases .
This means the minimum
must be to the right of the
point .

Solution: Increase  .
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To minimize , start with an initial guess .
Where do we go next?

If , decrease .

If , increase .

One way to accomplish this:
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To minimize a differentiable function :

Pick a positive number, . This number is called the learning rate, or step size.

Pick an initial guess, .

Then, repeatedly update your guess using the update rule:

Repeat this process until convergence – that is, when  doesn't change much.
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Gradient descent is a numerical method for finding the input to a function  that
minimizes the function.

Why is it called gradient descent?

The gradient is the extension of the derivative to functions of multiple
variables.
We will see how to use gradient descent with multivariate functions next class.

What is a numerical method?

A numerical method is a technique for approximating the solution to a
mathematical problem, often by using the computer.
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See this notebook for a demo!

13

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-fa&subPath=lectures/lecture14/lec14_code.ipynb


While gradient descent can minimize other kinds of differentiable functions, its
most common use case is in minimizing empirical risk.

Gradient descent is widely used in machine learning, to train models from linear
regression to neural networks and transformers (includng ChatGPT)!
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Answer at q.dsc40a.com

For example, consider:
The constant model, .
The dataset .

The initial guess  and the learning rate .

Exercise: Find  and .
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform


The dataset .
The initial guess  and the learning rate .

16



Now, we'll explore the following ideas:

When is gradient descent guaranteed to converge to a global minimum?
What kinds of functions work well with gradient descent?

How do I choose a step size?

How do I use gradient descent to minimize functions of multiple variables, e.g.:
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When is gradient descent guaranteed to work?
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A convex function A non-convex function 
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A function  is convex if, for every  in the domain of , the line segment
between:

does not go below the plot of .

A convex function 20



A function  is convex if, for every  in the domain of , the line segment
between:

does not go below the plot of .

A non-convex function 21



A function  is convex if, for
every  in the domain of , and for every

:

A function is nonconvex if it is not convex.

This is a formal way of restating the
definition from the previous slide.
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Answer at q.dsc40a.com

Is  convex?

A. Yes
B. No

C. Maybe
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform


Reminder: Traingle inequality: 
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Answer at q.dsc40a.com

Which of these functions are not convex?

A. .
B. .

C. .

D. .

E. More than one of the above are non-convex.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
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A concave function is the negative of a convex function.
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If  is a function of a single variable and is twice differentiable, then  is
convex if and only if:

concave if and only if:

Example:  is convex.
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Convex functions are (relatively) easy to minimize with gradient descent.

Theorem: If  is convex and differentiable, then gradient descent converges to a
global minimum of , as long as the step size is small enough.

Why?

Gradient descent converges when the derivative is 0.
For convex functions, the derivative is 0 only at one place – the global
minimum.

In other words, if  is convex, gradient descent won't get "stuck" and
terminate in places that aren't global minimums (local minimums, saddle
points, etc.).
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We say a function is nonconvex if it does not meet the criteria for convexity.

Nonconvex functions are (relatively) difficult to minimize.

Gradient descent might still work, but it's not guaranteed to find a global
minimum.

We saw this at the start of the lecture, when trying to minimize
.
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In practice, choosing a step size involves a lot of trial-and-error.

In this class, we've only touched on "constant" step sizes, i.e. where  is a constant.

Remember:  is the "step size", but the amount that our guess for  changes is
, not just .

In future courses, you'll learn about "decaying" step sizes, where the value of 
decreases as the number of iterations increases.

Intuition: take much bigger steps at the start, and smaller steps as you
progress, as you're likely getting closer to the minimum.
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More examples
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First, we learned about squared loss,
.

Then, we learned about absolute loss,
.

Let's look at a new loss function, Huber loss:
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Squared loss in blue, Huber loss in green.
Note that both loss functions are convex!
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For the constant model, :

So, the derivative of empirical risk is:

It's impossible to set  and solve by hand: we need gradient descent!
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Let's try this out in practice! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-fa&subPath=lectures/lecture15/lec15-code.ipynb


Consider the function:

It has two partial derivatives:  and .
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If  is a function of multiple variables, then its gradient, , is a vector
containing its partial derivatives.

Example:

Example:
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Example:

The minimizer of  is a vector, .

We start with an initial guess, , and step size , and update our guesses using:
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Given an initial guess of  and a step size of , perform two iterations

of gradient descent. What is ?
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To find optimal model parameters for the model  and squared
loss, we minimized empirical risk:

This is a function of multiple variables, and is differentiable, so it has a gradient!

Key idea: To find  and , we could use gradient descent!
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Let's watch  this animation that Jack made.
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https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E
https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E


In Homework 5, you'll see a few questions involving today's material.
After the midterm, we'll start talking about probability.
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