Lectures 15-16

Gradient Descent and Convexity

DSC 40A, Fall 2024



Agenda

* Minimizing functions using gradient descent.
e Convexity.

e More examples.
o Huber loss.

o @Gradient descent with multiple variables.



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/

g gradient descent




What does the derivative of a function tell us?

e Goal: Given a differentiable function f(t), find the input t* that minimizes f(t).
e What does % f(t) mean?

fO =5t -1 =52 +2t-9

f(@)
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Let's go hiking!

e Suppose you're at the top of a
mountain & and need to get to
the bottom.

steep slope
Value of D is high
So take large steps

slope is less steep
is low

e Further, suppose it's really cloudy :

, meaning you can only see a
few feet around you.

e How would you get to the
bottom?



Searching for the minimum

Tangent line to f(t) at t = -0.25 | . . el
—4 Slope of tangent line: 4.0 Su ppOose we re given an initial

guess for a value of t that
minimizes f(t).

If the slope of the tangent line
at f(t) is positive #:

5t — 3 — 512 +2t—9

e Increasing t increases f.

f(t)

e This means the minimum
must be to the left of the

point (¢, f(t)).

, | e Solution: Decrease t k3.




Searching for the minimum

Tangent line to f(t) att = -1

_4- Slope of tangent line: -11 Suppose we're given an initial
s guess for a value of t that
N minimizes f(t).
- If the slope of the tangent line
T at f(t) is negative ":
5 e Increasing t decreases f.
" e This means the minimum
11 must be to the right of the
-12 : . : r : pOint (t7 f(t))

, e Solution: Increase t E£3.



Intuition

e To minimize f(t), start with an initial guess t.

e Where do we go next?
o If Z—{(to) > 0, decrease ty.

o If z—{(to) < 0, increase ty.

e One way to accomplish this:



Gradient descent

To minimize a differentiable function f:

Pick a positive number, a. This number is called the learning rate, or step size.

Pick an initial guess, .

Then, repeatedly update your guess using the update rule:

d
tin =t~ a0 (1)

Repeat this process until convergence — that is, when t doesn't change much.

——————

111111

10



What is gradient descent?

e Gradient descent is a numerical method for finding the input to a function f that
minimizes the function.

e Why is it called gradient descent?

o The gradient is the extension of the derivative to functions of multiple
variables.

o We will see how to use gradient descent with multivariate functions next class.

e \What is a numerical method?

o A numerical method is a technique for approximating the solution to a
mathematical problem, often by using the computer.
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Gradient descent

def gradient descent(derivative, h, alpha, tol=1e-12):

""TMinimize using gradient descent.”””
while True:

h next = h - alpha * derivative(h)

if abs(h_next - h) < tol:

break

h = h_next

return h
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See this notebook for a demo!
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-fa&subPath=lectures/lecture14/lec14_code.ipynb

Gradient descent and empirical risk minimization

e While gradient descent can minimize other kinds of differentiable functions, its
most common use case is in minimizing empirical risk.

e Gradient descent is widely used in machine learning, to train models from linear
regression to neural networks and transformers (includng ChatGPT)!
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T

Question =
Answer at q.dsc40a.com

e For example, consider:
o The constant model, H(x) = h.
o The dataset —4, —2, 2, 4.
o The initial guess hy = 4 and the learning rate a =

e Exercise: Find h1 and hs.

1
T
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Empirical Minimization with Gradient Descent
1 ¢ dR; 2 «
Rsyq = — i — h . 1= h — y;
e The dataset —4, —2, 2,4.
e The initial guess hg = 4 and the learning rate a =

hy =

N
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Lingering questions
Now, we'll explore the following ideas:
e When is gradient descent guaranteed to converge to a global minimum?
o What kinds of functions work well with gradient descent?
e How do | choose a step size?

e How do | use gradient descent to minimize functions of multiple variables, e.q.:

1
qu(w07w1) - Z(yz _ (’wo + ’w1$i))2

n
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guaranteed to work?
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Convex functions

f(®)

T T T
-0.5 0 0.5

t

A convex function

f(®)

—9.54

~104

—10.5-
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—11.5-
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t

A non-convex function X
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Convexity

e A function f is convex if, for every a, b in the domain of f, the line segment
between:

(@, f(a)) and (b, f(b))

does not go below the plot of f.

A convex function
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Convexity

e A function f is convex if, for every a, b in the domain of f, the line segment
between:

(@, f(a)) and (b, f(b))

does not go below the plot of f.

111111

A non-convex function X
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Formal definition of convexity

e Afunction f: R — R is convex if, for
every a, b in the domain of f, and for every

t €[0,1]:

(1 —1)f(a) +tf(b) > f((1 —t)a + tb)

e A function is nonconvex if it is not convex.

e This is a formal way of restating the
definition from the previous slide.
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T

Question =
Answer at g.dsc40a.com
s f(x) = || convex?

* A Yes

e B.No
e C. Maybe
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Example: Prove f(x) = |z| is convex / nonconvex

Reminder: Traingle inequality: |a 4+ B| < |a| + |3
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Question =

T

Answer at q.dsc40a.com

Which of these functions are not convex?

e A f(z) =|x — 4

B. f(z) = e”.
C. f(x) =+vVzx— 1.
D. f(z) = (z — 3)*.

E. More than one of the above are non-convex.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Convex vs. concave

flx) = (x -3)*

fO)=Vx-1
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Concave functions

e A concave function is the negative of a convex function.

&

fly)

flz)




Second derivative test for convexity

e If f(¢) is a function of a single variable and is twice differentiable, then f(t) is
o convex if and only if:

d’ f
—(t) >0, Vit
dt? (t) 2
o concave if and only if:
d*f
W(t) >0, Vt

4

e Example: f(z) = x* is convex.
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Why does convexity matter?
e Convex functions are (relatively) easy to minimize with gradient descent.

e Theorem: If f(t) is convex and differentiable, then gradient descent converges to a
global minimum of f, as long as the step size is small enough.

e Why?

o Gradient descent converges when the derivative is 0.

o For convex functions, the derivative is 0 only at one place — the global
minimum.

o In other words, if f is convex, gradient descent won't get "stuck" and
terminate in places that aren't global minimums (local minimums, saddle
points, etc.).
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Nonconvex functions and gradient descent
e We say a function is nonconvex if it does not meet the criteria for convexity.

e Nonconvex functions are (relatively) difficult to minimize.

e Gradient descent might still work, but it's not guaranteed to find a global
minimum.

o We saw this at the start of the lecture, when trying to minimize
f(t) = 5t* — 3 — 5t2 + 2t — 0.
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Choosing a step size in practice
e |n practice, choosing a step size involves a lot of trial-and-error.

* |n this class, we've only touched on "constant" step sizes, i.e. where « is a constant.

f
tiv1 =t; —a—
e Remember: a is the "step size", but the amount that our guess for ¢ changes is

ol

a—-(t;), not just o

e |n future courses, you'll learn about "decaying" step sizes, where the value of o
decreases as the number of iterations increases.

o Intuition: take much bigger steps at the start, and smaller steps as you
progress, as you're likely getting closer to the minimum.
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Example: Huber loss and the constant model

e First, we learned about squared loss,
qu(yia H(w’&)) — (yi o H(CBZ))Z

e Then, we learned about absolute loss,
Labs(yia H(mz)) — |yz — H(ml)’

e Let's look at a new loss function, Huber loss:
L(y; — H(z;))? if |y — H(z;)| < 0

L uber iaH i)) — 1
hub (?/ (CB )) {5, (‘yz _ H(:L'z)! — %5) otherwise
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Squared loss in blue, Huber loss in green.

Note that both loss functions are convex! 9



Minimizing average Huber loss for the constant model

 For the constant model, H(xz) = h:

T (y; — h)? if |ly; — h| <6
y'l 1 yz —
Luber iah =42
huber (Y ) {5- (lyi — h| — $6) otherwise
oL .\ _ [—(yi—h) if [y; —h[ <0

— ﬁ(h) {—6 -sign(y; — h) otherwise

e So, the derivative of empirical risk is:
dRypuper o 1 O (yz — h) if ‘yz — h’ < )
dh (h) = n ;{ - sign(y; — h) otherwise

e |t's impossible to set M(h) = (0 and solve by hand: we need gradient descent!
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Let's try this out in practice! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-fa&subPath=lectures/lecture15/lec15-code.ipynb

Minimizing functions of multiple variables

e Consider the function:

f(ml,:cg) — (iBl — 2)2 + 21 — (wz — 3)2

e |t has two partial derivatives: g—ai and g—mi.
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The gradient vector

e If f(z) is a function of multiple variables, then its gradient, V f(&), is a vector
containing its partial derivatives.

e Example:
f(&) = (x1 —2)* + 221 — (22 — 3)°
o\ 2%1 — 2
TR
e Example:

f(7) = 7%

— Vf(z) =

38



(Tm ‘Om)d

8000 -
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Gradient descent for functions of multiple variables

e Example:

f(ml,:cg) — (iBl — 2)2 + 21 — (wz — 3)2

201 — 2
R

o . i
e The minimizer of fisavector, z* = | _|.
L9
e We start with an initial guess, Z©), and step size &, and update our guesses using:

Z+1) — 20 _ av.f(a‘f(i))
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Exercise
f(z1,22) = (21— 2)* + 221 — (22 — 3)°

201 — 2
V(@) = [Zm; j 6]

) = 200 _ v £(20)
Given an initial guess of 70 — [O] and a step size of a = % perform two iterations

of gradient descent. What is #(2)?

41
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Example: Gradient descent for simple linear regression

e To find optimal model parameters for the model H(x) = wo + w1z and squared
loss, we minimized empirical risk:

Rsq(wo, w1) = — Z(yz — (wo + w1z;))”

e This is a function of multiple variables, and is differentiable, so it has a gradient!

—— Z (wo + w1%;))
VR(w) =
—— Z (wo + wiz;))x;

e Key idea: To find wy and w7, we could use gradient descent!



Gradient descent for simple linear regression, visualized

R('UJ(, wl)

Parameters: wg = —0.8,w; = —5.8
gl R(wo,w;) =29.5

Gradient

e

Step Size = 0.1 Negative Gradient

Let's watch »& this animation that Jack made.
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https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E
https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E

What's next?

e |n Homework 5, you'll see a few questions involving today's material.

o After the midterm, we'll start talking about probability.
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