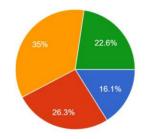

PSC 40A Theoretical Foundations of Data Science I

Announcements

- Homework 6 due Monday Homework 7 released <u>11h7</u> and due <u>n/6</u>. (No slip day for HW7)


Course Survey

How often do you attend office hours? 140 responses

- I regularly attend at least one of the instructors' or TA/tutor's office hours.
- I'm afraid to go to office hours or to ask for help with the material.
- I have no interest or need in attending office hours.
- I attend as many office hours as I can.

How many lectures a week do you attend in-person? 137 responses

48*1+26*2/3+22*1/3=72

2

03

0

How helpful are OH in helping you understand/practice course content?

- Extremely helpful 49
- Helpful 39

Favorite aspect of the course:

- Office hours, they are really good for learning while having fun.
- I think office hours are fun and a good vibe
- The ability to go to office hours for help
- office hours is where the class grows interesting. I love attending office hours to do work with the tutors and to essentially see how everyone thinks about the problems at hand.

Feedback for staff

- I find the staff to be very helpful with their explanations
- They're all really cool people and I enjoy spending time in office hours with them.
- I think the DSC 40A staff have been really helpful so far in OH

- Law of total probability.
- Bayes theorem.

Remember, you can always ask questions at <u>q.dsc40a.com</u>!

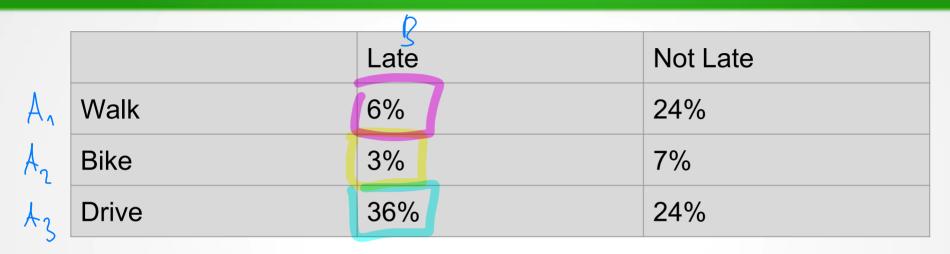
If the direct link doesn't work, click the "Lecture Questions" link in the top right corner of <u>dsc40a.com</u>.

- You conduct a survey:
 - How did you get to campus today? Walk, bike, or drive?

n Wallh & Late

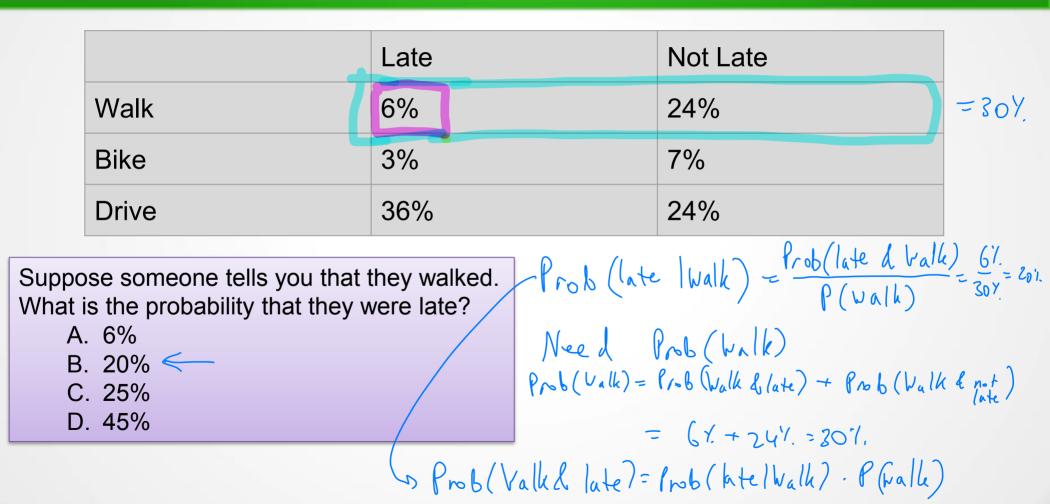
• Were you late?

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%
Il and to do t		


all sum to 100%.

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

What is the probability that a randomly selected person is late?


- A. 24%
- B. 30%

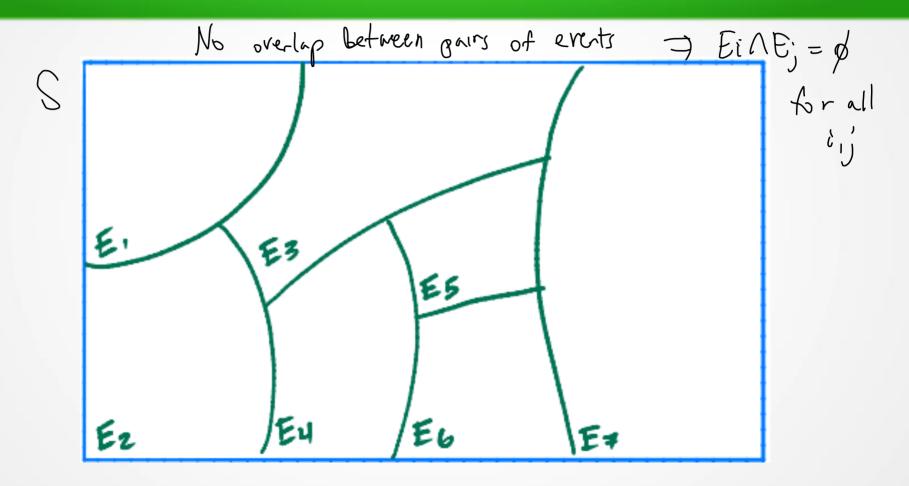
D. 50%

Since everyone either walks, bikes, or drives,

P(Late AND Walk) + P(Late AND Bike) + P(Late AND Drive) • This is called the Law of Total Probability.

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

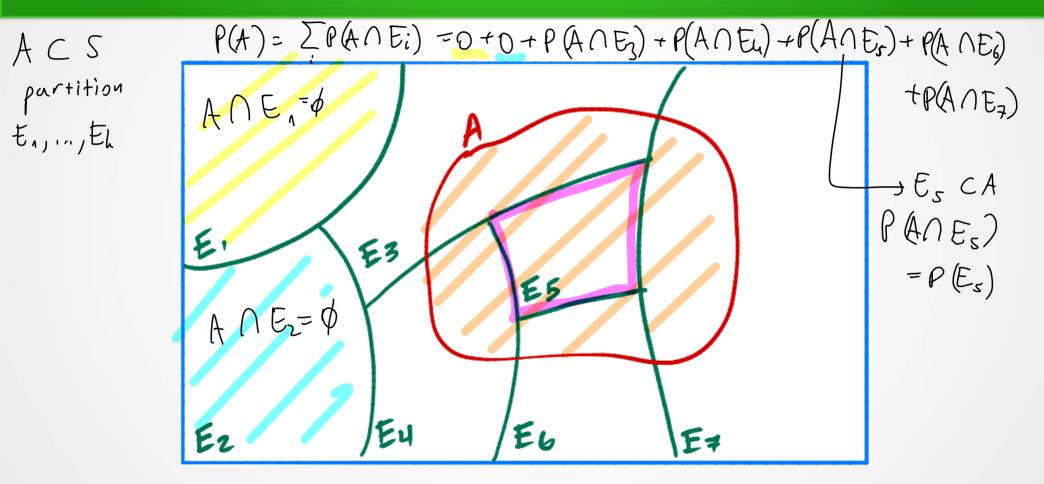
• Since everyone either walks, bikes, or drives,


P(Late) = P(Late AND Walk) + P(Late AND Bike) + P(Late AND Drive)

```
P(Late) = P(Late|Walk)*P(Walk) + P(Late|Bike)*P(Bike)
+P(Late|Drive)*P(Drive)
```

Partitions

• A set of events E_1, E_2, \dots, E_k is a **partition** of S if • $P(E_i \cap E_j) = 0$ for all $i, j \leftarrow A || pairs of events are mutually exclusive$ • $P(E_1) + P(E_2) + ... + P(E_k) = 1 - f(S)$ $P(S) = 1 = \sum_{i} P(E_i)$ Every outcome in S belongs to only one of the Ei's Malk 301, Late Not late Bike 101. [451. 551.] Example 601. Drive


Partitions

Law of Total Probability

• If A is an event and $E_1, E_2, ..., E_k$ is a **partition** of S, then $P(A) = P(A \cap E_1) + P(A \cap E_2) + ... + P(A \cap E_k)$ $= \sum_{i=1}^k P(A \cap E_i)$

Law of Total Probability

Law of Total Probability

• If A is an event and E_1, E_2, \dots, E_k is a **partition** of S, then $P(A) = P(A \cap E_{1}) + P(A \cap E_{2}) + \dots + P(A \cap E_{k})$ joint probabilites $= \sum_{i=1}^{k} P(A \cap E_{i})$ my H(ip)ication rule joint prob =) cond. prob.• Written another way, $P(A) = P(A | E_1) \cdot P(E_1) + \dots + P(A | E_b) \cdot P(E_b)$ $= \sum_{i=1}^{R} P(A \mid E_i) \cdot P(E_i)$

		Late		Not Late
Wal	k	6%		24%
Bike	9	3%		7%
Driv	'е	36%		24%
Suppose someone is late. What is the probability that they walked? Choose the best answer. A. Close to 5% B. Close to 5% C. Close to 15% D. Close to 30%		P(late p(val PAIR	$P(ate walk) = 20\%,$ $P(ate walk) = \frac{P(walk \& ate)}{P(wte)} = \frac{6\%}{P(wte)}$ $\frac{6\%}{45\%} \approx 13\%,$ $P(k) = P(k)$	

- Suppose all you know is
 - P(Late) = 45%
 - P(Walk) = 30%
 - o P(Late|Walk) = 20%
- Can you still find P(Walk|Late)? $P(walk|(ate) = \frac{P(Walk \& Late)}{P(Late)} = \frac{P(Walk \& Late)}{P(Late)} = \frac{P(walk) \cdot P(walk)}{P(Late)} = \frac{0.2 \cdot 0.3}{0.75} \approx 13\%$

k = A ND = O

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(B|A) = P(A \text{ and } B) = P(B) * P(A|B)$$

Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(B|A) = P(A \text{ and } B) = P(B) * P(A|B)$$
Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A) =} = \Pr(A|B) \Pr(B) + \Pr(A|B) \Pr(B) + \Pr(A|B) \Pr(B)$$

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A|B)} = \frac{P(A|B) * P(B)}{P(B) * P(A|B)} = \frac{P(B) * P(A|B)}{P(B) * P(A|B)} = \frac{P(B) * P(B)}{P(B) * P(B)} = \frac{P(B) * P(B) * P(B)}{P(B) * P(B)} = \frac{P(B) * P(B)}{P(B)} =$$