Lecture 7

Orthogonal Projections

DSC 40A, Spring 2024



Announcements

e Homework 3 is due on Saturday, April 27th.
o Still try to finish it relatively early, since we won't have office hours on Saturday.

e Homework 1 scores are available on Gradescope.
o Regrade requests are due on Sunday.



Agenda

e Spans and projections.
o Matrices.
e Spans and projections, revisited.

e Regression and linear algebra.



DK

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/




Projecting onto a single vector

e Let 2 and v be two vectors in R™.
e The span of Z is the set of all
vectors of the form:
wT
where w € R is a scalar.

e Question: What vector in span(z)
is closest to /?

e The vector in span(z) that is
closest to v is the
projection of 1 onto span(z).
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Projection error

e Let € = 1y — wZ be the projection
error: that is, the vector that connects
to span(z).

e Goal: Find the w that makes € as short

as possible.
o Thatis, minimize:

€]
o Equivalently, minimize:
|y — wZ|

 ldea: To make € has short as possible, it
should be orthogonal to wz.
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Minimizing projection error
e Goal: Find the w that makes € = 7 — wz as short as possible.
o Idea: To make € as short as possible, it should be orthogonal to wz.

« Can we prove that making € orthogonal to wa minimizes ||€||?



Minimizing projection error

e Goal: Find the w that makes € = 7 — wz as short as possible.

, € must be orthogonal to wz.

« Now we know that to minimize ||e

e Given this fact, how can we solve for w?



Orthogonal projection
 Question: What vector in span(z) is closest to 7/?
o Answer: It is the vector w*z, where:

T -

- =

L L

w* =

e Note that w* is the solution to a minimization problem, specifically, this one:
error(w) = [|€]] = [l — wi|

 We call w*Z the orthogonal projection of 1 onto span(z).
o Think of w*Z as the "shadow" of

10



Exercise

B 5) = —1
Leta = and b = .
o) b= |

What is the orthogonal projection of a onto span(b)?

Your answer should be of the form w*b, where w* is a scalar.
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Moving to multiple dimensions

e Let's now consider three vectors, 7/, 21 and #(?) allin R™.
» Question: What vector in span(z("), (%)) is closest to 7/?

o Vectors in span(f(l), 5(2)) are of the form w17 + wy7 2 where wy,ws € R
are scalars.

e Before trying to answer, let's watch »& this animation that Jack, one of our tutors,
made.

wy = —0.33, wy = +0.87

.f(l)
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https://youtu.be/dJcbJKpYywk?si=giWFps-ixYDXBwzh
https://youtu.be/dJcbJKpYywk?si=giWFps-ixYDXBwzh
https://youtu.be/dJcbJKpYywk?si=giWFps-ixYDXBwzh

Minimizing projection error in multiple dimensions

e Question: What vector in span(z("), Z(?)) is closest to /?

o That is, what vector minimizes ||€||, where:

€ =1 —wzt —wyz?

o Answer: It's the vector such that w17} + w72 is orthogonal to €.

e |ssue: Solving for w1 and ws in the following equation is difficult:

(w@(l) —+ ’LU2£(2)) . ( — wlf(l) — wza?(Z)) =0

N\ _J/
V
—
(&
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Minimizing projection error in multiple dimensions

e |t's hard for us to solve for w1 and w3 in:

(w@(l) + wﬁu)) . ( — w3 — w25(2)) — 0

\ . J/

« Observation: All we really need is for (1) and Z(?) to individually be orthogonal to €.

o Thatis, it's sufficient for € to be orthogonal to the spanning vectors themselves.

—

e 71 .8 =0andz? - € = 0, then:
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Minimizing projection error in multiple dimensions
e Question: What vector in span(z("), Z(?)) is closest to /?

« Answer: It's the vector such that w17 ! + w7 (?) is orthogonal to

g =Y — wlzfé(l) — w25(2).

« Equivalently, it's the vector such that 7(1) and Z(?) are both orthogonal to é:
gm.(_w@m_wﬁm)zo

5@.(_w@m_wﬁm)zo

N _J/
VO
—
e

e This is a system of two equations, two unknowns (w1 and w»), but it still looks difficult
to solve.



Now what?

o We're looking for the scalars w; and ws that satisfy the following equations:
fm.(_w@m_wﬁw)zo

5@.(_w@m_wﬁm)20

\ _J
VO
—
e

« In this example, we just have two spanning vectors, 7! and 7(?)

o |[f we had any more, this system of equations would get extremely messy, extremely

quickly.

o |dea: Rewrite the above system of equations as a single equation, involving matrix-

vector products.
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Matrices

e Ann X d matrix is a table of numbers with n rows and d columns.

o We use upper-case letters to denote matrices.

A:258
-1 5 -3

e Since A has two rows and three columns, we say A € R?*3,

o Key idea: Think of a matrix as several column vectors, stacked next to each other.
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Matrix addition and scalar multiplication
e We can add two matrices only if they have the same dimensions.
e Addition occurs elementwise:
[2 5! 8]+[1 2 3]:[3 7 11
-1 5 -3 0 1 2 -1 6 -1

e Scalar multiplication occurs elementwise, too:

2258_41016
-1 5 -3/ |—-2 10 -6

|
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Matrix-matrix multiplication

o Key idea: We can multiply matrices A and B if and only if:

# columns in A = # rows in B

o If Aisn X dand Bisd x p,then ABisn x p.

o Example: If A is as defined below, what is AT A?

A:258
-1 5 -3
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T

Question =

Answer at g.dsc40a.com

Assume A, B, and C are all matrices. Select the incorrect statement below.

« AA(B+C)=AB+ AC.
B. A(BC) = (AB)C.
C.AB = BA.

D.(A+ B)T = AT + BT,
E.(AB)T = BT AT,
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Matrix-vector multiplication

e Avectorv € R"is a matrix with 7 rows and 1 column.

ST
I

e Suppose A € R™*¢,
o What must the dimensions of v be in order for the product Av to be valid?

o What must the dimensions of ¥ be in order for the product v A to be valid?
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One view of matrix-vector multiplication

e One way of thinking about the product Av is that it is the dot product of v with every
row of A.

e Example: What is Av?

A:258
-1 5 -3

cl
I
|
p—t
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Another view of matrix-vector multiplication

 Another way of thinking about the product Av is that it is a linear combination of the
columns of A4, using the weights in v.

e Example: What is Av?

A:258
-1 5 -3

cl
I
|
p—t
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Matrix-vector products create linear combinations of columns!

e Key idea: It'll be very useful to think of the matrix-vector product Av as a linear

combination of the columns of A4, using the weights in v.

aii a1d U1
a21 a2d .
A — v =
| An1 And_ | Vd_
a1 a1d
~ a1 a2d
Av = vy + ... + vy
anl And
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Isited
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Moving to multiple dimensions

e Let's now consider three vectors, 7/, 21 and #(?) allin R™.
» Question: What vector in span(z("), (%)) is closest to 7/?

o That is, what values of w; and wy minimize ||€]| = || — w1 ZM) — wy

@)
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Matrix-vector products create linear combinations of columns!

2 ~1
7V = |5 72 = |0
_3_ e 4 —

X = [z1) Z@)| =

| L i
w1

e Then,ifw = [
w2

] ‘linear combinations of (1) and Z(?) can be written as Xw.

e The span of the columns of X, or Span(X), consists of all vectors that can be
written in the form Xw.



Minimizing projection error in multiple dimensions

| | 2 -1
X=1|z0 z@] =15 0
o] o
» Goal: Find the vector @ = [wy ws|” suchthat ||€]| = ||J — X || is minimized.

e As we've seen, W must be such that:

5@.(_w@m_wﬁm)zo

5@.(_w@m_wﬁm>:0

\

'
e

e How can we use our knowledge of matrices to rewrite this system of equations as

a single equation?



Simplifying the system of equations, using matrices

I
X=1|z0 z@] =15 0
1 B 4l




Simplifying the system of equations, using matrices

N | 2 —1
X=1|z0 z@] =15 0
] s
1. w17 4+ w72 can be written as X10,s0 € = 1/ — X10.

2. The condition that € must be orthogonal to each column of X is equivalent to
condition that X' ¢ = 0.
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The normal equations

- | ] 2 —1
x=[30 z|=|5 o
o] o
e Goal: Find the vector @ = [w; ws]" such that
» We now know that it is the vector w* such that:
X'é=0

X' —Xw*) =0
X' — X' Xw*=0

le|| = ||y — Xw|| is minimized.

— XTXw*=Xx"

e The last statement is referred to as the normal equations.

33



The general solution to the normal equation
X E Rnxd

« Goal, in general: Find the vector w € R? such that ||€|| = ||/ — Xw|| is minimized.

e We now know that it is the vector w* such that:
XTe=0
— X'XxXw*=Xx"

o Assuming X © X is invertible, this is the vector:

,&»‘)* _ (XTX)—IXT

o This is a big assumption, because it requires X * X to be full rank.

o If X T X is not full rank, then there are infinitely many solutions to the normal
equations, X I Xw* = X1,
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What does it mean?
» Original question: What vector in span(Z ("), 2(?)) is closest to /?

Final answer: It is the vector Xw™*, where:

’lTJ* _ (XTX)—lXT

e Revisiting our example:

| | ] 2 -1
X=1|z0 z@] =15 0
A N I B I S

0.7289
Using a computer gives us w* = (X1 X) 71 X1 ~ [ ] .

1.6300
e So, the vector in span(z(!), Z(?)) closest to /s 0.7289% (") 4 1.6300% %),
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An optimization problem, solved
o We just used linear algebra to solve an optimization problem.
e Specifically, the function we minimized is:
error(w) = ||y — Xw||
o This is a function whose input is a vector, w, and whose output is a scalar!
 Theinput, w*, to error(w) that minimizes it is:
w* = (XTX)tx?t

o \We're going to use this frequently!
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bra
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Wait... why do we need linear algebra?

e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to find
hypothesis functions that:

o Use multiple features (input variables).

o Are non-linear in the features, e.g. H(z) = wg + w1z + woz?.

e Let's see if we can put what we've just learned to use.
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Simple linear regression, revisited

Model: H (x) = wy + w1 .

Loss function: (y; — H(z;))?.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

140+

e To find wy and w3, we minimized empirical

120+

e - risk, i.e. average loss:

' RN 2

Ryg(H) = — > (yi — H(zy))
i=1

Observation: Ry, (wo, w1 ) kind of looks
; ; ; ; like the formula for the norm of a vector,

Home Departure Time (AM)
9] = y/vi+v3+ ...+ 02
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Regression and linear algebra

Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values”.

« The hypothesis vector is the vector i € R™ with components H(x;).Thisis the
vector of predicted values.

e The error vector is the vector € € R™ with components:
€; — — H(CBZ)
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Example

Consider H(z) = 2+ .
6

51 o
4 @

3

2 O

1

0

oY
|
|

>

Sl
|
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Regression and linear algebra

Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values”.

« The hypothesis vector is the vector i € R™ with components H(x;).Thisis the
vector of predicted values.

e The error vector is the vector € € R™ with components:
€; — — H(CBZ)

e Key idea: We can rewrite the mean squared error of H as:

1 & 1., 1 . -
Ryg(H) == (v, — H(z;))’ = =||&|* = = |§ - &l
n

n i—1 n
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The hypothesis vector

« The hypothesis vector is the vector h € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H () = w + wix, the hypothesis vector can be
written:
Wy + wiT1

Wy + W1T2

>
]
]

W + W1Ln_



Rewriting the mean squared error

o Define the design matrix X € R"*? as:

1 L1

1 L9
X —

1 z,

. — N Wy
e Define the parameter vector w < R2tobew = [
w1

e Then, h = Xw, so the mean squared error becomes:

|

1 .. - .
qu(H) — _Hy_ hH2 — qu(w) —
n

1

—lly =X
n

—

w

I*
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What's next?

e To find the optimal model parameters for simple linear regression, "w(’; and w’{ we
previously minimized:
1 <& 9
qu(wOa wl) — Z( — (wO T wlw%))

n 1=1

e Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find w; and w7 by minimizing:

S 1 S
Rua(®) = — |7 — X

 We've already solved this problem! Assuming X’ X is invertible, the best W is:

’ITJ* _ (XTX)_lXT
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