Lecture 11

Gradient Descent, Continued

DSC 40A, Spring 2024

Announcements

- Midterm Exam scores are available on Gradescope, and regrade requests are due on Tuesday, May 14th at 11:59PM.
- Homework 5 will be released tomorrow, and will be due on Thursday, May 16th at 11:59PM.

Fall 2016			
Class	Title	Un.	Gr
CHEM 1A	General Chemistry	3	B-
CHEM 1AL	General Chemistry Laboratory	1	C+
COMPSCI 61A	The Structure and Interpretation of Computer Programs	4	B+
COMPSCI 70	Discrete Mathematics and Probability Theory	4	Α
COMPSCI 195	Social Implications of Computer Technology	1	P
MATH 1A	Calculus	4	A+
Spring 2017			
Class	Title	Un.	Gr
COMPSCI 61B	Data Structures	4	B+
COMPSCI 97	Field Study	1	P
COMPSCI 197	Field Study	1	P
ELENG 16A	Designing Information Devices and Systems I	4	B-
MATH 110	Linear Algebra	4	C
MATH 128A	Numerical Analysis	4	B+

My freshman year transcript.

Fall 2017				
Class	Title	Un.	Gr.	Pts.
COMPSCI 170	Efficient Algorithms and Intractable Problems	4.0	B-	10.8
COMPSCI 197	Field Study	2.0	P	0.0
COMPSCI 375	Teaching Techniques for Computer Science	2.0	Р	0.0
COMPSCI 399	Professional Preparation: Supervised Teaching of Computer Science	1.0	Р	0.0
EECS 126	Probability and Random Processes	4.0	B+	13.2
ENGIN 120	Principles of Engineering Economics	3.0	B+	9.9
SSEASN R5A	Self, Representation, and Nation	4.0	A-	14.8
Spring 2018				
Class	Title	Un.	Gr.	Pts.
Class //calcentral.berkeley.edu/aca		Un.	Gr.	Pts.
//calcentral.berkeley.edu/aca		Un.	Gr.	
		Un.		Page
//calcentral.berkeley.edu/aca	ademics/academic_summary			Page 11/12/19, 1:
//calcentral.berkeley.edu/aca mic Summary CalCentral	combinatorics and Discrete Probability	4.0	В	11/12/19, 1: 12.0

My sophomore year transcript.

Agenda

- Recap: Gradient descent.
- Convexity.
- More examples.
 - Huber loss.
 - Gradient descent with multiple variables.

Answer at q.dsc40a.com

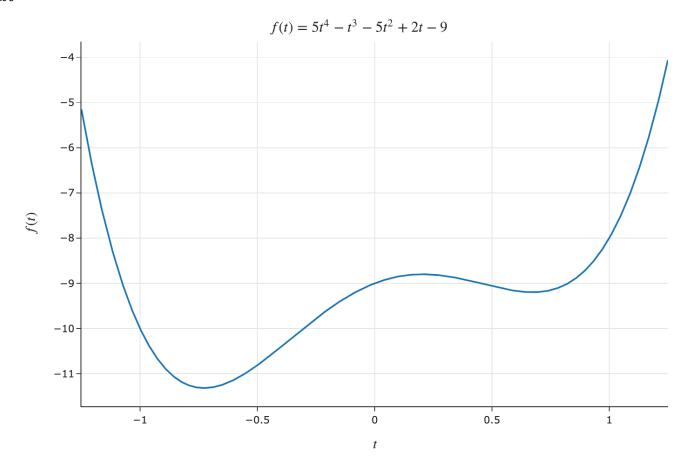
Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " > Lecture Questions" link in the top right corner of dsc40a.com.

Overview: Gradient descent

What's the point?

- Goal: Given a differentiable function f(t), find the input t^* that minimizes f(t).
- What does $\frac{d}{dt}f(t)$ mean?



Gradient descent

To minimize a **differentiable** function f:

- Pick a positive number, α . This number is called the **learning rate**, or **step size**.
- Pick an **initial guess**, t_0 .
- Then, repeatedly update your guess using the **update rule**:

$$t_{i+1} = t_i - lpha rac{df}{dt}(t_i)$$

- ullet Repeat this process until **convergence** that is, when t doesn't change much.
- This procedure is called **gradient descent**.

What is gradient descent?

- ullet Gradient descent is a numerical method for finding the input to a function f that minimizes the function.
- Why is it called gradient descent?
 - \circ The gradient is the extension of the derivative to functions of multiple variables.
 - We will see how to use gradient descent with multivariate functions next class.
- What is a numerical method?
 - A numerical method is a technique for approximating the solution to a mathematical problem, often by using the computer.
- Gradient descent is widely used in machine learning, to train models from linear regression to neural networks and transformers (including ChatGPT)!

See dsc40a.com/resources/lectures/lec10 for animated examples of gradient descent, and see this notebook for the associated code!

Gradient descent and empirical risk minimization

- While gradient descent can minimize other kinds of differentiable functions, its most common use case is in minimizing empirical risk.
- For example, consider:
 - \circ The constant model, H(x)=h.
 - \circ The dataset -4, -2, 2, 4.
 - \circ The initial guess $h_0=4$ and the learning rate $lpha=rac{1}{4}$.
- Exercise: Find h_1 and h_2 .

Lingering questions

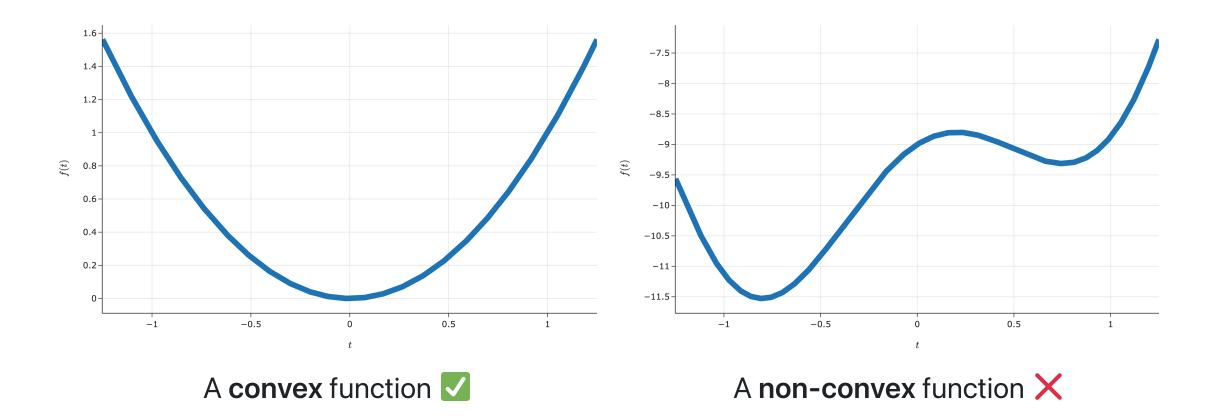
Now, we'll explore the following ideas:

- When is gradient descent guaranteed to converge to a global minimum?
 - What kinds of functions work well with gradient descent?
- How do I choose a step size?
- How do I use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

When is gradient descent guaranteed to work?

Convex functions

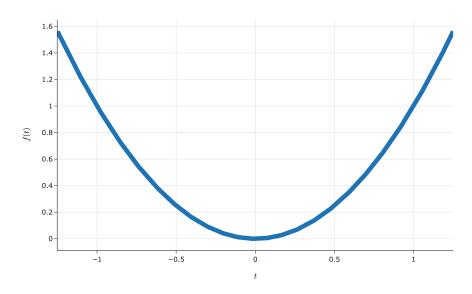


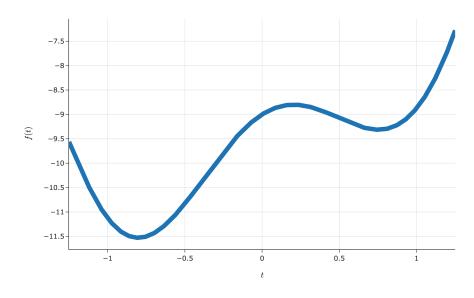
Convexity

• A function f is **convex** if, for **every** a, b in the domain of f, the line segment between:

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.





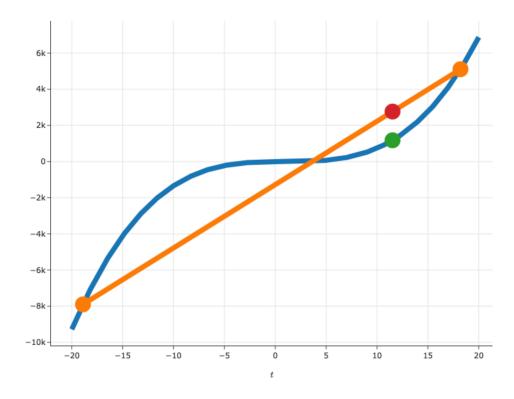
A non-convex function X

Formal definition of convexity

• A function $f:\mathbb{R} o \mathbb{R}$ is **convex** if, for **every** a,b in the domain of f, and for every $t \in [0,1]$:

$$\Big|(1-t)f(a)+tf(b)\geq f((1-t)a+tb)\Big|$$

• This is a formal way of restating the definition from the previous slide.



Question 🤔

Answer at q.dsc40a.com

Which of these functions are **not** convex?

- A. f(x) = |x|.
- B. $f(x) = e^x$.
- C. $f(x) = \sqrt{x-1}$.
- D. $f(x) = (x-3)^{24}$.
- E. More than one of the above are non-convex.

Second derivative test for convexity

• If f(t) is a function of a single variable and is **twice** differentiable, then f(t) is convex **if and only if**:

$$rac{d^2f}{dt^2}(t) \geq 0, \;\; orall \, t$$

• Example: $f(x) = x^4$ is convex.

Why does convexity matter?

- Convex functions are (relatively) easy to minimize with gradient descent.
- Theorem: If f(t) is convex and differentiable, then gradient descent converges to a global minimum of f, as long as the step size is small enough.

• Why?

- Gradient descent converges when the derivative is 0.
- For convex functions, the derivative is 0 only at one place the global minimum.
- \circ In other words, if f is convex, gradient descent won't get "stuck" and terminate in places that aren't global minimums (local minimums, saddle points, etc.).

Nonconvex functions and gradient descent

- We say a function is **nonconvex** if it does not meet the criteria for convexity.
- Nonconvex functions are (relatively) difficult to minimize.
- Gradient descent might still work, but it's not guaranteed to find a global minimum.
 - \circ We saw this at the start of the lecture, when trying to minimize $f(t)=5t^4-t^3-5t^2+2t-9.$

Choosing a step size in practice

- In practice, choosing a step size involves a lot of trial-and-error.
- In this class, we've only touched on "constant" step sizes, i.e. where α is a constant.

$$t_{i+1} = t_i - lpha rac{df}{dt}(t_i)$$

- Remember: α is the "step size", but the amount that our guess for t changes is $\alpha \frac{df}{dt}(t_i)$, not just α .
- In future courses, you'll learn about "decaying" step sizes, where the value of α decreases as the number of iterations increases.
 - Intuition: take much bigger steps at the start, and smaller steps as you progress, as you're likely getting closer to the minimum.

More examples

Example: Huber loss and the constant model

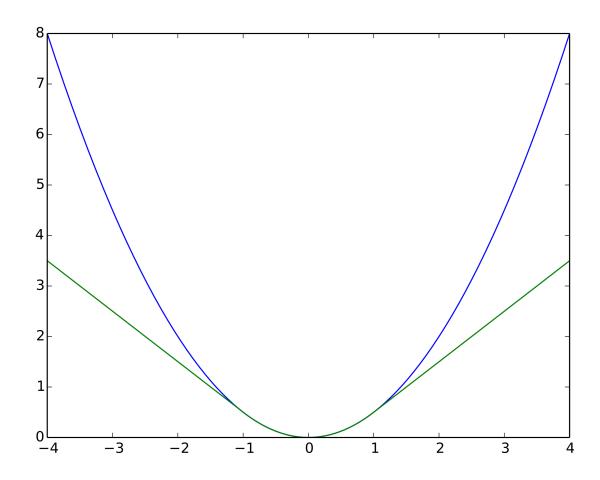
• First, we learned about squared loss, $L_{\text{sq}}(y_i, H(x_i)) = (y_i - H(x_i))^2$.

• Then, we learned about absolute loss, $L_{\mathrm{abs}}(y_i, H(x_i)) = |y_i - H(x_i)|.$

$$L_{\mathrm{abs}}(y_i,H(x_i)) = |y_i - H(x_i)|$$

Let's look at a new loss function, Huber loss:

$$L_{ ext{huber}}(y_i, H(x_i)) = egin{cases} rac{1}{2}(y_i - H(x_i))^2 & ext{if } |y_i - H(x_i)| \leq \delta \ \delta \cdot (|y_i - H(x_i)| - rac{1}{2}\delta) & ext{otherwise} \end{cases}$$



Squared loss in blue, Huber loss in green.

Note that both loss functions are convex!

Minimizing average Huber loss for the constant model

• For the constant model, H(x) = h:

$$L_{ ext{huber}}(y_i,h) = egin{cases} rac{1}{2}(y_i-h)^2 & ext{if } |y_i-h| \leq \delta \ \delta \cdot (|y_i-h|-rac{1}{2}\delta) & ext{otherwise} \end{cases} \ \implies rac{\partial L}{\partial h}(h) = egin{cases} -(y_i-h) & ext{if } |y_i-h| \leq \delta \ -\delta \cdot ext{sign}(y_i-h) & ext{otherwise} \end{cases}$$

So, the derivative of empirical risk is:

$$rac{dR_{ ext{huber}}}{dh}(h) = rac{1}{n} \sum_{i=1}^n egin{cases} -(y_i - h) & ext{if } |y_i - h| \leq \delta \ -\delta \cdot ext{sign}(y_i - h) & ext{otherwise} \end{cases}$$

ullet It's **impossible** to set $rac{dR_{
m huber}}{dh}(h)=0$ and solve by hand: we need gradient descent!

Let's try this out in practice! Follow along in this notebook.

Minimizing functions of multiple variables

• Consider the function:

$$f(x_1,x_2)=(x_1-2)^2+2x_1-(x_2-3)^2$$

• It has two partial derivatives: $\frac{\partial f}{\partial x_1}$ and $\frac{\partial f}{\partial x_2}$.

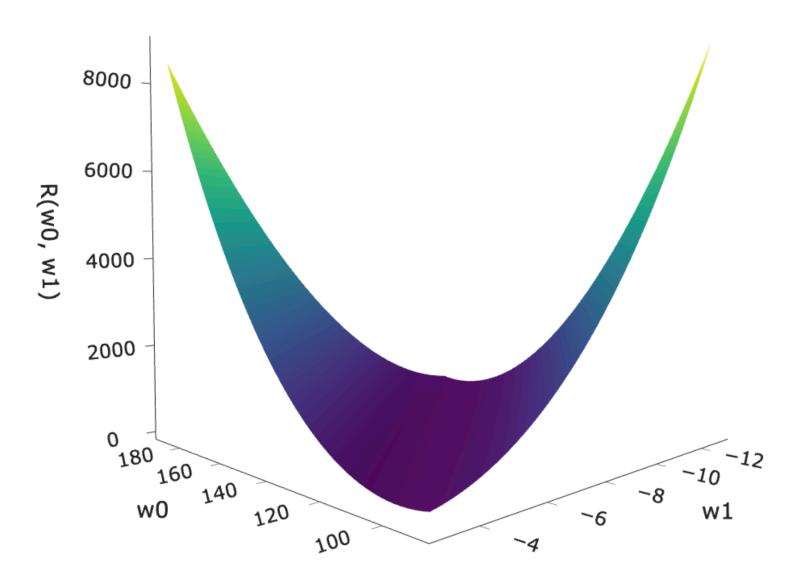
The gradient vector

- If $f(\vec{x})$ is a function of multiple variables, then its **gradient**, $\nabla f(\vec{x})$, is a vector containing its partial derivatives.
- Example:

$$f(ec{x}) = (x_1-2)^2 + 2x_1 - (x_2-3)^2 \
abla f(ec{x}) = egin{bmatrix} 2x_1 - 2 \ 2x_2 - 6 \end{bmatrix}$$

• Example:

$$f(ec{x}) = ec{x}^T ec{x} \ \implies
abla f(ec{x}) =$$



Gradient descent for functions of multiple variables

• Example:

$$f(x_1,x_2)=(x_1-2)^2+2x_1-(x_2-3)^2 \
abla f(ec{x}_1,ec{x}_2)=egin{bmatrix} 2x_1-2 \ 2x_2-6 \end{bmatrix}$$

- ullet The minimizer of f is a vector, $ec{x}^* = egin{bmatrix} x_1^* \ x_2^* \end{bmatrix}$.
- We start with an initial guess, $ec{x}^{(0)}$, and step size lpha, and update our guesses using:

$$ec{x}^{(i+1)} = ec{x}^{(i)} - lpha
abla f(ec{x}^{(i)})$$

Exercise

$$f(x_1,x_2) = (x_1-2)^2 + 2x_1 - (x_2-3)^2 \
abla f(ec{x}_1, ec{x}_2) = egin{bmatrix} 2x_1 - 2 \ 2x_2 - 6 \end{bmatrix} \ ec{x}^{(i+1)} = ec{x}^{(i)} - lpha
abla f(ec{x}^{(i)})$$

Given an initial guess of $\vec{x}^{(0)}=\begin{bmatrix}0\\0\end{bmatrix}$ and a step size of $\alpha=\frac13$, perform **two** iterations of gradient descent. What is $\vec{x}^{(2)}$?

Example: Gradient descent for simple linear regression

ullet To find optimal model parameters for the model $H(x)=w_0+w_1x$ and squared loss, we minimized empirical risk:

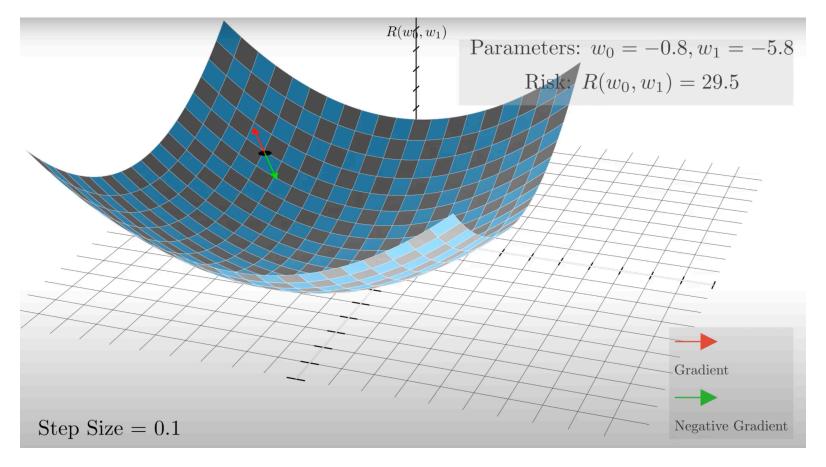
$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

• This is a function of multiple variables, and is differentiable, so it has a gradient!

$$abla R(ec{w}) = egin{bmatrix} -rac{2}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i)) \ -rac{2}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i)) x_i \end{bmatrix}$$

ullet Key idea: To find w_0^* and w_1^* , we could use gradient descent!

Gradient descent for simple linear regression, visualized



Let's watch ## this animation that Jack made.

What's next?

- In Homework 5, you'll see a few questions involving today's material:
 - A question about convexity.
 - A question about implementing gradient descent to find optimal parameters for a model that is **not linear in its parameters**.
- On Tuesday, we'll start talking about probability.
 - Homework 5 will have a probability problem taken from a past DSC 10 exam, to help you refresh.