Lecture 11

Gradient Descent, Continued

DSC 40A, Spring 2024

Announcements

- Midterm Exam scores are available on Gradescope, and regrade requests are due on Tuesday, May 14th at 11:59PM.
- Homework 5 will be released tomorrow, and will be due on Thursday, May 16th at 11:59PM.

Fall 2016

Class	Title	Un.	Gr.
CHEM 1A	General Chemistry	3	B-
CHEM 1AL	General Chemistry Laboratory	1	C+
COMPSCI 61A	The Structure and Interpretation of Computer Programs	4	B+
COMPSCI 70	Discrete Mathematics and Probability Theory	4	А
COMPSCI 195	Social Implications of Computer Technology	1	Ρ
MATH 1A	Calculus	4	A+

Spring 2017

Class	Title	Un.	Gr.
COMPSCI 61B	Data Structures	4	B+
COMPSCI 97	Field Study	1	Ρ
COMPSCI 197	Field Study	1	Ρ
ELENG 16A	Designing Information Devices and Systems I	4	B-
MATH 110	Linear Algebra	4	С
MATH 128A	Numerical Analysis	4	B+

My freshman year transcript.

Fall 2017				
Class	Title	Un.	Gr.	Pts.
COMPSCI 170	Efficient Algorithms and Intractable Problems	4.0	B-	10.8
COMPSCI 197	Field Study	2.0	Ρ	0.0
COMPSCI 375	Teaching Techniques for Computer Science	2.0	Р	0.0
COMPSCI 399	Professional Preparation: Supervised Teaching of Computer Science	1.0	Ρ	0.0
EECS 126	Probability and Random Processes	4.0	B+	13.2
ENGIN 120	Principles of Engineering Economics	3.0	B+	9.9
SSEASN R5A	Self, Representation, and Nation	4.0	A-	14.8

Spring 2018				
Class	Title	Un.	Gr.	Pts.

```
https://calcentral.berkeley.edu/academics/academic_summary
```

Page 2 c

Aca	ademic Summary CalCentral				11/12/19, 1:06
	COMPSCI 174	Combinatorics and Discrete Probability	4.0	в	12.0
	COMPSCI 189	Introduction to Machine Learning	4.0	B+	13.2
	PHYSICS 7A	Physics for Scientists and Engineers	4.0	B+	13.2
	SASIAN R5B	India in the Writer's Eye	4.0	B-	10.8

My sophomore year transcript.

Agenda

- Recap: Gradient descent.
- Convexity.
- More examples.
 - $\circ~$ Huber loss.
 - Gradient descent with multiple variables.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

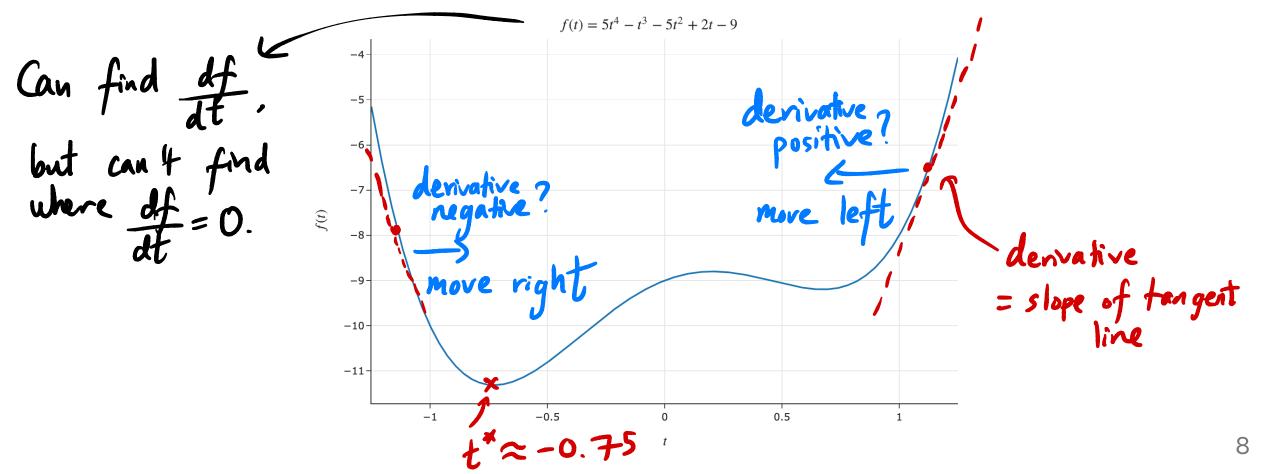
If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

Overview: Gradient descent

derivative exists everywhere!

What's the point?

- Goal: Given a differentiable function f(t), find the input t^* that minimizes f(t).
- What does $rac{d}{dt}f(t)$ mean?



Gradient descent

To minimize a **differentiable** function f:

- Pick a positive number, α . This number is called the **learning rate**, or **step size**.
- Pick an initial guess, t_0 .
- Then, repeatedly update your guess using the **update rule**:

$$t_{i+1} = t_i - \alpha \frac{df}{dt}(t_i) \qquad \text{learning rate/step size}$$
negative, because
marry opposite the derivative

- Repeat this process until **convergence** that is, when t doesn't change much.
- This procedure is called gradient descent.

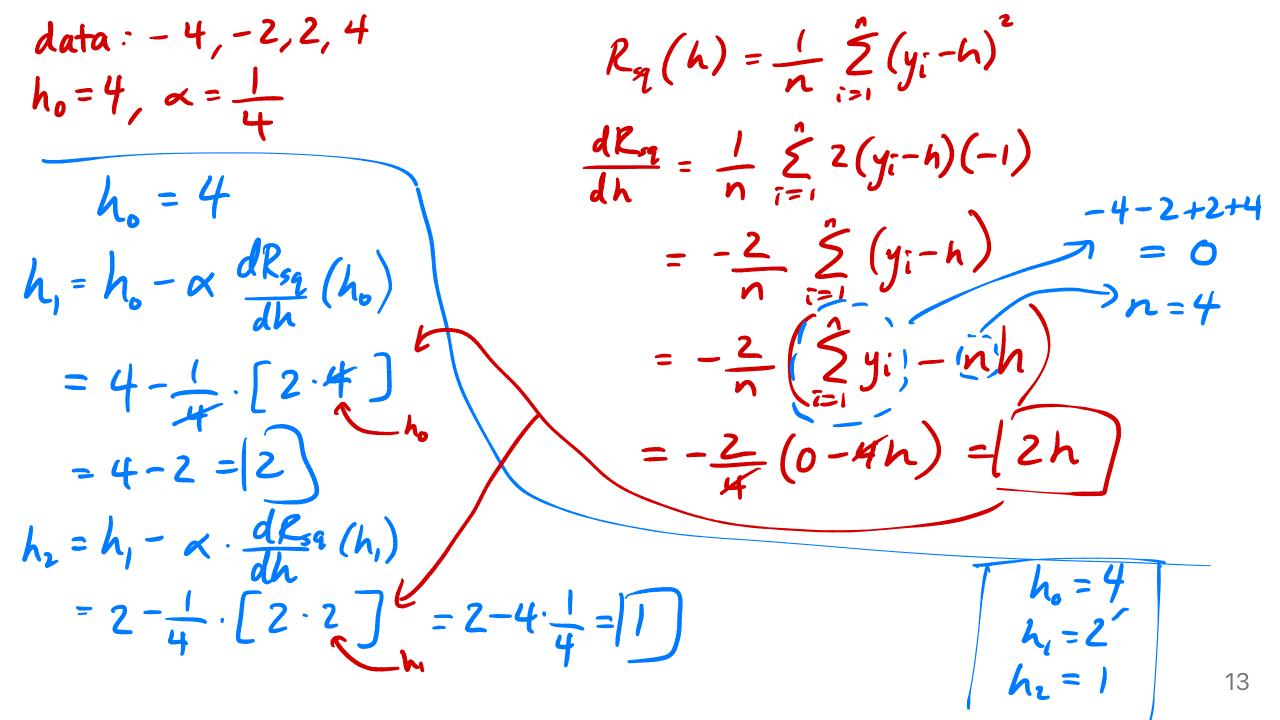
What is gradient descent?

- Gradient descent is a numerical method for finding the input to a function f that minimizes the function. f descending to the bottom!
- Why is it called **gradient** descent?
 - The gradient is the extension of the derivative to functions of multiple variables.
 - We will see how to use gradient descent with multivariate functions next class.
- What is a **numerical** method?
 - A numerical method is a technique for approximating the solution to a mathematical problem, often by using the computer.
- Gradient descent is **widely used** in machine learning, to train models from linear regression to neural networks and transformers (including ChatGPT)!

See dsc40a.com/resources/lectures/lec10 for animated examples of gradient descent, and see this notebook for the associated code!

Gradient descent and empirical risk minimization

- While gradient descent can minimize other kinds of differentiable functions, its most common use case is in minimizing empirical risk.
- For example, consider:
 - $\circ\;$ The constant model, H(x)=h.
 - \circ The dataset -4, -2, 2, 4.
 - $\circ\;$ The initial guess $h_0=4$ and the learning rate $lpha=rac{1}{4}.$
- Exercise: Find h_1 and h_2 .



Lingering questions

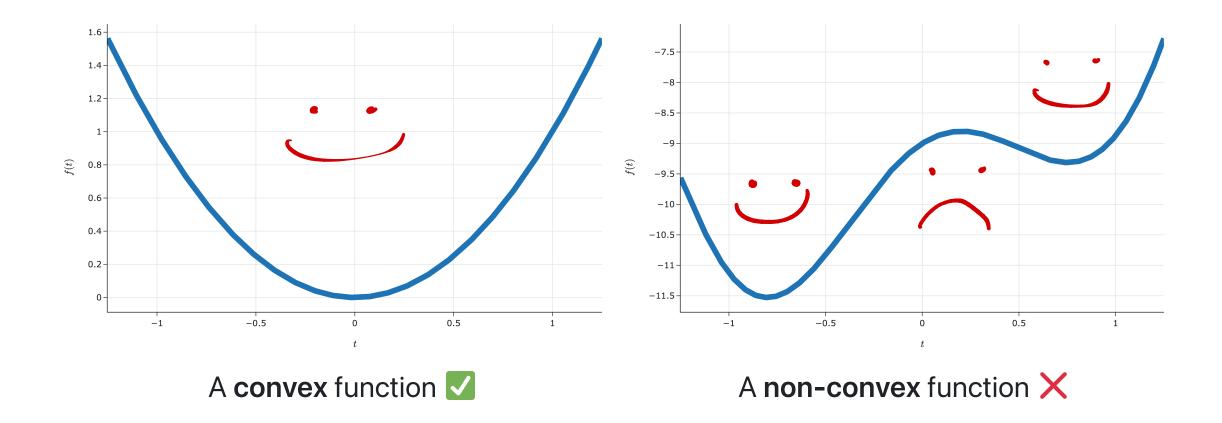
Now, we'll explore the following ideas:

- When is gradient descent *guaranteed* to converge to a global minimum?
 - What kinds of functions work well with gradient descent?
- How do I choose a step size?
- How do I use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

When is gradient descent guaranteed to work?

Convex functions

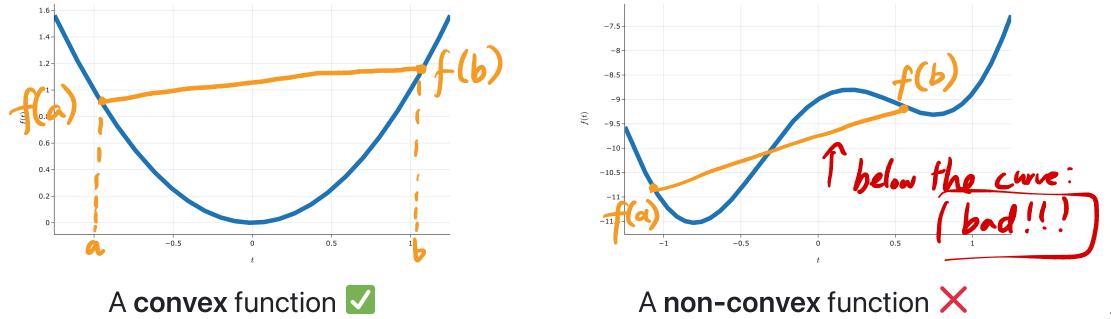


Convexity

• A function f is **convex** if, for **every** a, b in the domain of f, the line segment between:

(a, f(a)) and (b, f(b))

does not go below the plot of f.



Formal definition of convexity

• A function $f:\mathbb{R} o\mathbb{R}$ is **convex** if, for **every** a,b in the domain of f, and for every $t\in[0,1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb)$$

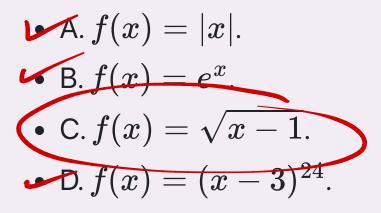
ine between function between
f(a) and f(b) $x=a, x=b$

• This is a formal way of restating the definition from the previous slide. **need**: $line \ge function$ $line \ge function$

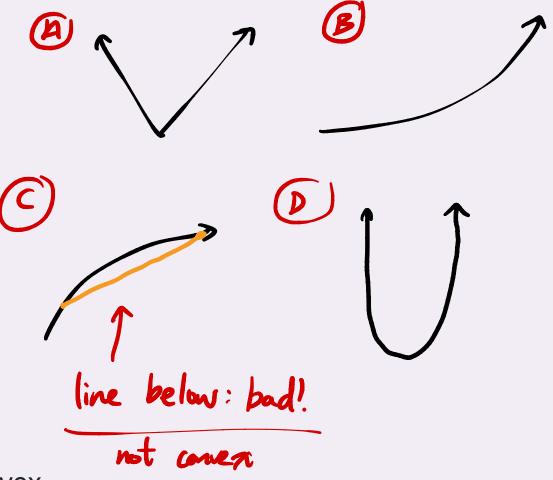
Aside:
$$if \quad 0 \leq t \leq 1$$
, what is
 $50 + 30t \quad (80, 1)$
 $= (1-t)50 + 80t \quad (50, 0)$
 64
 44
 64
 -24
 -44
 -24
 -44
 -54
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -64
 -74
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -75
 -7

Answer at q.dsc40a.com

Which of these functions are **not** convex?



• E. More than one of the above are non-convex.



Second derivative test for convexity

• If f(t) is a function of a single variable and is **twice** differentiable, then f(t) is convex **if and only if**:

• Example:
$$f(x) = x^4$$
 is convex.

$$f'(\pi) = 4\pi^3$$

$$f''(\pi) = 12\pi^2 \ge 0 \quad \forall \pi$$

Why does convexity matter?

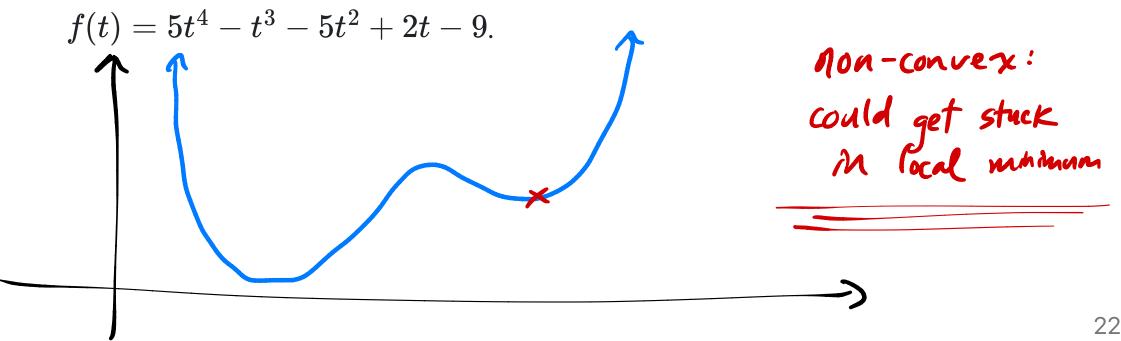
- Convex functions are (relatively) easy to minimize with gradient descent.
- Theorem: If f(t) is convex and differentiable, then gradient descent converges to a global minimum of f, as long as the step size is small enough.

• Why?

- Gradient descent converges when the derivative is 0.
- $\circ~$ For convex functions, the derivative is 0 only at one place the global minimum.
- \circ In other words, if f is convex, gradient descent won't get "stuck" and terminate in places that aren't global minimums (local minimums, saddle points, etc.).

Nonconvex functions and gradient descent

- We say a function is **nonconvex** if it does not meet the criteria for convexity.
- Nonconvex functions are (relatively) difficult to minimize.
- Gradient descent might still work, but it's not guaranteed to find a global minimum.
 - We saw this at the start of the lecture, when trying to minimize



Choosing a step size in practice

- In practice, choosing a step size involves a lot of trial-and-error.
- In this class, we've only touched on "constant" step sizes, i.e. where α is a constant.

$$t_{i+1} = t_i - lpha rac{df}{dt}(t_i)$$

- Remember: α is the "step size", but the amount that our guess for t changes is $\alpha \frac{df}{dt}(t_i)$, not just α .
- In future courses, you'll learn about "decaying" step sizes, where the value of α decreases as the number of iterations increases.
 - Intuition: take much bigger steps at the start, and smaller steps as you progress, as you're likely getting closer to the minimum.

More examples

H(x)=h

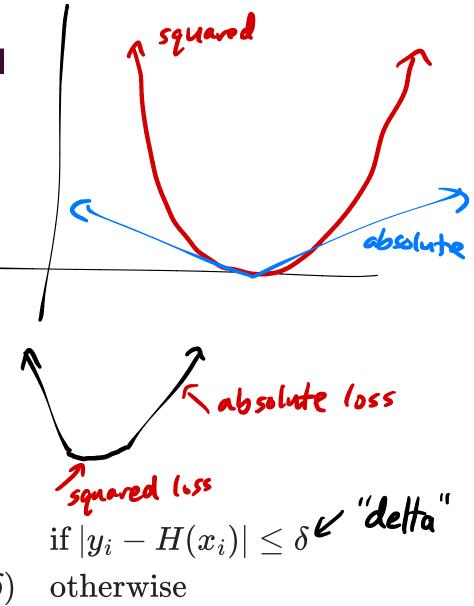
Example: Huber loss and the constant model

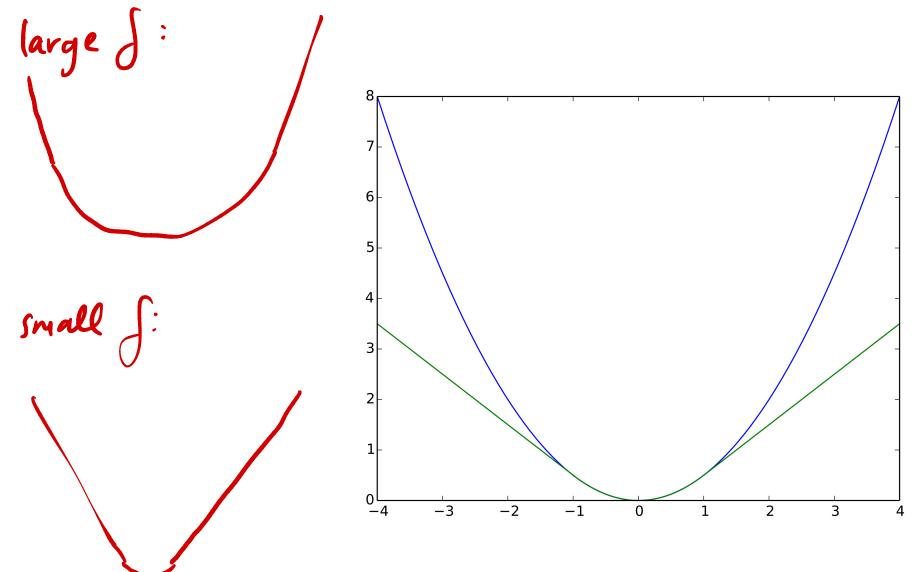
• First, we learned about squared loss, $L_{
m sq}(y_i, H(x_i)) = (y_i - H(x_i))^2.$

pro: differentiable, easy to minimize con: sensitive to outliers

- Then, we learned about absolute loss, $L_{abs}(y_i, H(x_i)) = |y_i - H(x_i)|.$ pro : robust to outliers con : not differentiable, hader to minimize
 - Let's look at a new loss function, Huber loss:

$$L_{ ext{huber}}(y_i, H(x_i)) = egin{cases} rac{1}{2}(y_i - H(x_i))^2 \ \delta \cdot (|y_i - H(x_i)| - rac{1}{2}\delta) \end{cases}$$





Squared loss in blue, **Huber** loss in green. Note that both loss functions are convex!

Minimizing average Huber loss for the constant model

• For the constant model, H(x) = h:

$$egin{aligned} L_{ ext{huber}}(y_i,h) &= egin{cases} rac{1}{2}(y_i-h)^2 & ext{if } |y_i-h| \leq \delta \ \delta \cdot (|y_i-h| - rac{1}{2}\delta) & ext{otherwise} \end{aligned} \ & igodots rac{\partial L}{\partial h}(h) &= egin{cases} -(y_i-h) & ext{if } |y_i-h| \leq \delta \ -\delta \cdot ext{sign}(y_i-h) & ext{otherwise} \end{aligned}$$

• So, the **derivative** of empirical risk is:

$$rac{dR_{ ext{huber}}}{dh}(h) = rac{1}{n}\sum_{i=1}^n iggl\{ egin{array}{cc} -(y_i-h) & ext{if } |y_i-h| \leq \delta \ -\delta \cdot ext{sign}(y_i-h) & ext{otherwise} \end{array}
ight.$$

• It's impossible to set $rac{dR_{ ext{huber}}}{dh}(h)=0$ and solve by hand: we need gradient descent!

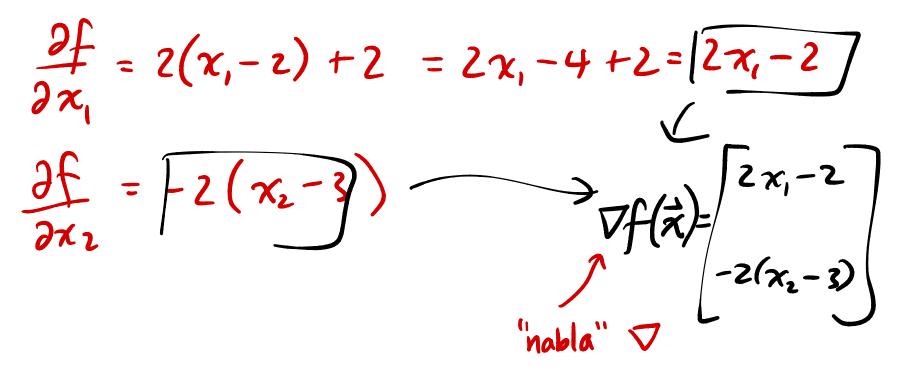
Let's try this out in practice! Follow along in this notebook.

Minimizing functions of multiple variables

• Consider the function:

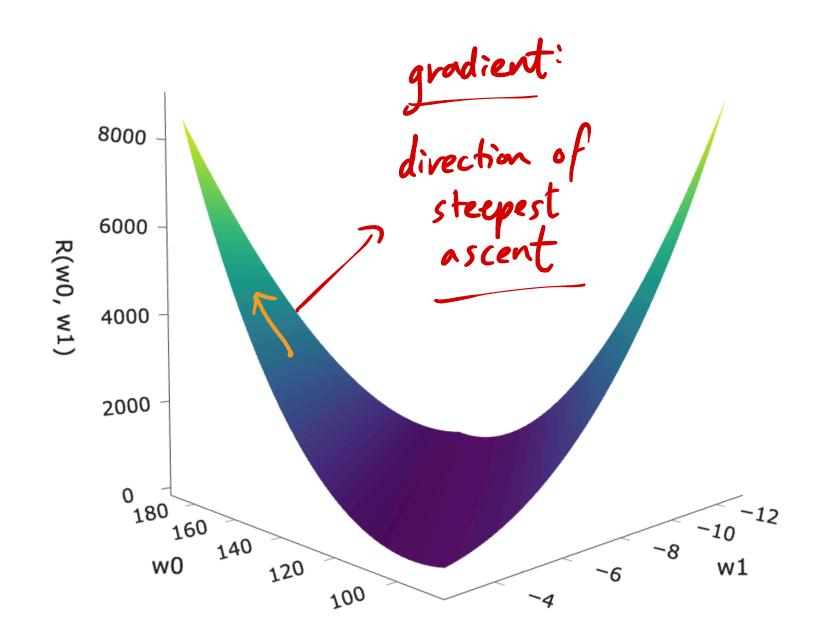
$$f(x_1,x_2)=(x_1-2)^2+2x_1-(x_2-3)^2$$

• It has two **partial derivatives**: $\frac{\partial f}{\partial x_1}$ and $\frac{\partial f}{\partial x_2}$.



The gradient vector

• If $f(\vec{x})$ is a function of multiple variables, then its **gradient**, $\nabla f(\vec{x})$, is a vector $\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$ containing its partial derivatives. $f:\mathbb{R}^2 \rightarrow \mathbb{R}$ • Example: $f(ec{x}) = (x_1-2)^2 + 2x_1 - (x_2-3)^2$ $abla f(ec{x}) = egin{bmatrix} 2x_1 - 2 \ -2x_2 - 6 \end{bmatrix}$ $f(\vec{x}) = \vec{x}_{-}^{T} \vec{x} = \chi_{1}^{2} + \chi_{2}^{2} + \dots + \chi_{n}^{2} \qquad \frac{\partial f}{\partial x_{i}} = 2\chi_{i}$ • Example: $\implies \nabla f(\vec{x}) = \begin{bmatrix} 2\pi_{i} \\ 2\pi_{2} \\ \vdots \\ 2\pi_{n} \end{bmatrix} = 2\vec{x}$ 30



Gradient descent for functions of multiple variables

• Example:

$$f(x_1, x_2) = (x_1 - 2)^2 + 2x_1 - (x_2 - 3)^2$$
 $abla f(\vec{x}) = \begin{bmatrix} 2x_1 - 2 \\ 2x_2 - 6 \end{bmatrix}$
 $f(\vec{x}) = \begin{bmatrix} x_1^* \\ x_1 \end{bmatrix}$

- The minimizer of f is a vector, $\vec{x}^* = \begin{vmatrix} x_1 \\ x_2^* \end{vmatrix}$.
- We start with an initial guess, $ec{x}^{(0)}$, and step size lpha, and update our guesses using:

$$ec{x}^{(i+1)} = ec{x}^{(i)} - lpha
abla f(ec{x}^{(i)})$$

Exercise

$$f(x_{1}, x_{2}) = (x_{1} - 2)^{2} + 2x_{1} - (x_{2} - 3)^{2}$$

$$\nabla f(\vec{x}) = \begin{bmatrix} 2x_{1} - 2\\ 2x_{2} - 6 \end{bmatrix}$$

$$\vec{x}^{(i+1)} = \vec{x}^{(i)} - \alpha \nabla f(\vec{x}^{(i)})$$
Given an initial guess of $\vec{x}^{(0)} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ and a step size of $\alpha = \frac{1}{3}$, perform two iterations of gradient descent. What is $\vec{x}^{(2)}$?
$$\vec{x}^{(1)} = \vec{x}^{(2)} - \measuredangle \nabla f(\vec{x}^{(2)}) = \begin{bmatrix} 0\\ 0 \end{bmatrix}^{-\frac{1}{3}} \begin{bmatrix} 2 \cdot 0 - 2\\ -(2 \cdot 0 - 6) \end{bmatrix}$$

$$= -\frac{1}{3} \begin{bmatrix} -2\\ -2 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 2 \cdot \frac{2}{3} - 2\\ -(2(-2) - 6) \end{bmatrix}$$

Example: Gradient descent for simple linear regression

• To find optimal model parameters for the model $H(x) = w_0 + w_1 x$ and squared loss, we minimized empirical risk:

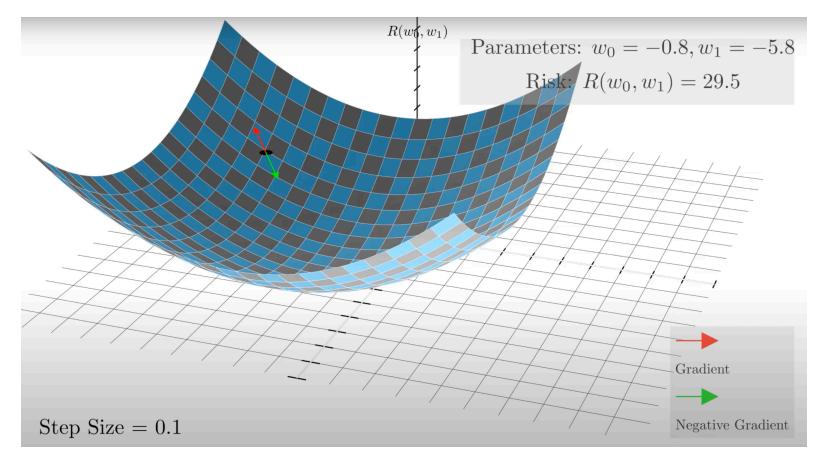
$$R_{
m sq}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

• This is a function of multiple variables, and is differentiable, so it has a gradient!

$$abla R(\vec{w}) = egin{bmatrix} -rac{2}{n}\sum_{i=1}^n(y_i-(w_0+w_1x_i)) \ -rac{2}{n}\sum_{i=1}^n(y_i-(w_0+w_1x_i))x_i \end{bmatrix} = 0$$

• Key idea: To find w_0^* and w_1^* , we could use gradient descent!

Gradient descent for simple linear regression, visualized



Let's watch **& this animation** that Jack made.

What's next?

- In Homework 5, you'll see a few questions involving today's material:
 - A question about convexity.
 - A question about implementing gradient descent to find optimal parameters for a model that is **not linear in its parameters**.
- On Tuesday, we'll start talking about probability.
 - Homework 5 will have a probability problem taken from a past DSC 10 exam, to help you refresh.