Lecture 16

Independence and Conditional Independence

1

DSC 40A, Spring 2024

Announcements

- There is no live lecture today (Tuesday). Instead, the lecture video will be pre-recorded and posted on the course website by Tuesday morning.
 - There's also a lecture note I wrote for this lecture that you should read.
- Homework 7 is due on Thursday at 11:59PM.
- The final exam is soon: start practicing at practice.dsc40a.com!
 - There are tons of past probability exams, searchable by topic.

Agenda

- Independence.
- Conditional independence.

Remember, we've posted **many** probability resources on the resources tab of the course website. These will come in handy! Specific resources you should look at:

- The DSC 40A probability roadmap, written by Janine Tiefenbruck.
- The textbook Theory Meets Data, which explains many of the same ideas and contains more practice problems.

For combinatorics specifically, there are two supplementary videos I created that you should watch. Both are linked in this playlist, which is also linked at dsc40a.com.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

Independence

Updating probabilities

 Bayes' Theorem describes how to update the probability of one event, given that old another event has occurred. ratio

New

- $\circ \mathbb{P}(B)$ can be thought of as the "prior" probability of B occurring, before knowing anything about A.
- $\circ \mathbb{P}(B|A)$ is sometimes called the "posterior" probability of B occurring, given that A occurred.
- What if knowing that A occurred doesn't change the probability that B occurs? In other words, what if: new old

 $\mathbb{P}(B|A) = \mathbb{P}(B)$

Independent events

• A and B are **independent events** if one event occurring does not affect the chance of the other event occurring.

$$\mathbb{P}(B|A) = \mathbb{P}(B) \xrightarrow{\mathbb{P}(A|B)} \mathbb{P}(A|B) = \mathbb{P}(A) \xrightarrow{\text{equivalent}} \text{statements}$$

• Otherwise, A and B are dependent events.

• Using Bayes' theorem, we can show that if one of the above statements is true, then so is the other.

with extra knowledge of A, P(B) is unchanged \Rightarrow Suppose P(B|A) = P(B). Let's show P(A|B) = P(A). Bayes: P(B|A) = P(B)P(A|B) P(A|B) = P(B)P(A|B) P(A|B) = P(B)P(A|B)P(A|B) = P(A)

Independent events

• Equivalent definition: A and B are independent events if:

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

- To check if A and B are independent, use whichever is easiest:
 - $\circ \mathbb{P}(B|A) = \mathbb{P}(B).$ $\circ \mathbb{P}(A|B) = \mathbb{P}(A).$ $\circ \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$ $\circ \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$

Answer at q.dsc40a.com mutually exclasive: no overlap (can't happen at the same time) Mutual exclusivity and independence

Suppose A and B are two events with non-zero probabilities. Is it possible for A and B to be both mutually exclusive and independent?

• A. Yes.

(•	В.	No.	

Example: Venn diagrams

For three events A, B, and C, we know that:

- A and C are independent,
- B and C are independent,
- A and B are mutually exclusive,
- $\mathbb{P}(A \cup C) = \frac{2}{3}$, $\mathbb{P}(B \cup C) = \frac{3}{4}$, $\mathbb{P}(A \cup B \cup C) = \frac{11}{12}$. A and B dou't overlap!

1-ac

aL

B

bc

c-ac-bc

Find $\mathbb{P}(A)$, $\mathbb{P}(B)$, and $\mathbb{P}(C)$.

For simplicity, let a = IP(A)b = P(B)c = R(c)

Tip: A Vem Diagram is not necessary, but (potentially)

3 equations, 3 unknowns
$$(a, b, c)$$
:
() $P(A \cup C) = a + c - ac = \frac{2}{3}$
() $P(A \cup C) = a + c - ac = \frac{2}{3}$
() $P(A \cup C) = a + c - ac = \frac{2}{3}$
() $P(B \cup C) = b + c - bc = \frac{3}{4}$
() $P(A \cup B \cup C) = a + b + c - ac - bc = \frac{11}{12}$
() $P(A \cup B \cup C) = a + b + c - ac - bc = \frac{11}{12}$
() $P(A \cup B \cup C) = a + b + c - ac - bc = \frac{11}{12}$
() $P(A \cup B \cup C) = a + b + c - ac - bc = \frac{11}{12}$
() $P(A \cup B \cup C) = a + b + c - ac - bc = \frac{11}{12}$
() $P(A \cup B \cup C) = a + b + c - ac - bc = \frac{11}{12}$
() $P(A \cup B \cup C) = a + b + c - ac - bc = \frac{11}{12}$
() $P(A) = \frac{1}{3}, P(A) = \frac{1}{3}, P(B) = \frac{1}{3}, P(B) = \frac{1}{2}, P(B) = \frac{1}{2}, P(C) = \frac{1}{2}$
() $P(A) = \frac{1}{2}, P(C) = \frac{1}{2}$
() $P(C) = \frac{1}{2}$
() $P(C) = \frac{1}{2}$
() $P(C) = \frac{1}{2}$

Example: Cards

: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

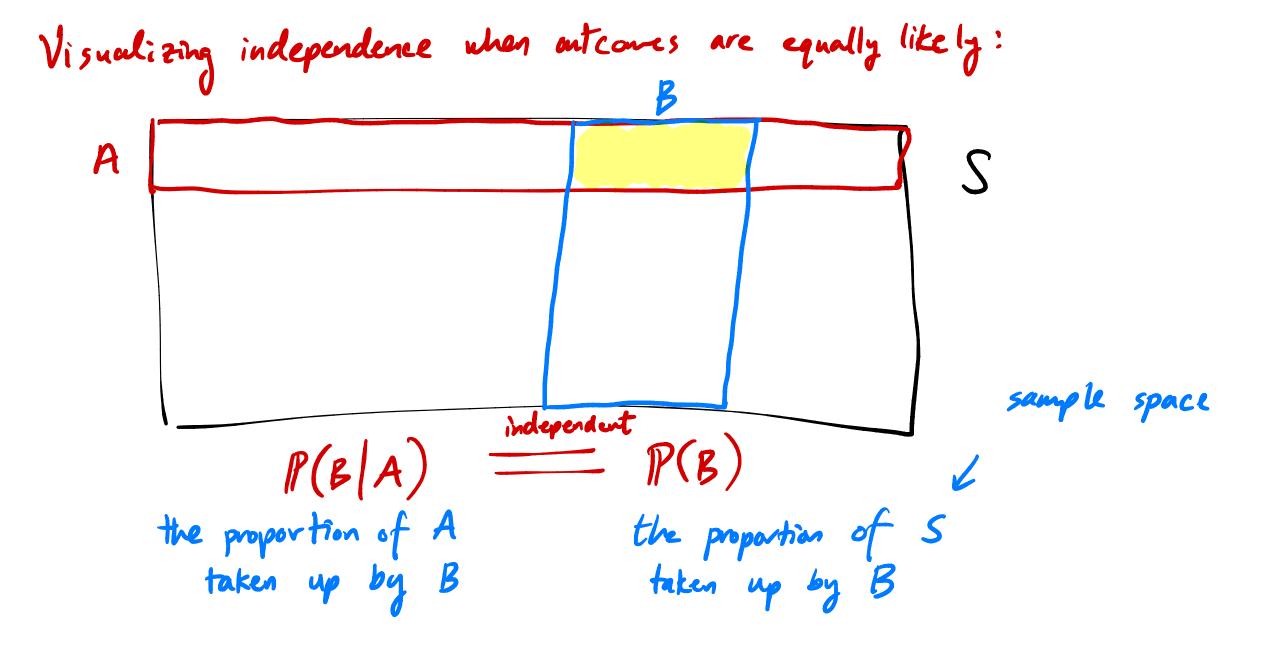
- Suppose you draw two cards, one at a time.
 - $\circ A$ is the event that the first card is a heart.
 - $\circ B$ is the event that the second card is a club.
- If you draw the cards with replacement, are A and B independent? Yes: $R(B|A) = \frac{13}{52} = R(B)$
- If you draw the cards without replacement, are A and B independent? No?

=) No: Once you remove one Heart, the remaining cards are less likely to be Hearts, and so more likely to be other suits, like clubs. $IP(B|A) = \frac{13}{51} \neq \frac{13}{52} = IP(B)$ if without replacement

Example: Cards A B • : 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A • : 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A • : 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A • : 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A • : 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

- Suppose you draw one card from a deck of 52.
 - A is the event that the card is a heart.
 - B is the event that the card is a face card (J, Q, K).
- Are A and B independent?
- $P(A) = \frac{13}{52} = \frac{1}{4}, P(B) = \frac{12}{52} = \frac{3}{13}$ $P(A \cap B) = \frac{3}{52} = P(A) \cdot P(B)$

Ano ther interpretation of independence: the proportion of face cards within A, $P(B|A) = \frac{3}{12}$ equals the proportion of face cards within the whole deck, $IP(B) = \frac{12}{52} = \frac{3}{13}$



Assuming independence

- Sometimes we assume that events are independent to make calculations easier.
- Real-world events are almost never exactly independent, but they may be close.

Example: Breakfast

1% of UCSD students are DSC majors. 25% of UCSD students eat avocado toast for breakfast. Assuming that being a DSC major and eating avocado toast for breakfast are independent:

1. What percentage of DSC majors eat avocado toast for breakfast? P(Avo + ost | DSC) = P(Avo + ost) = 25%

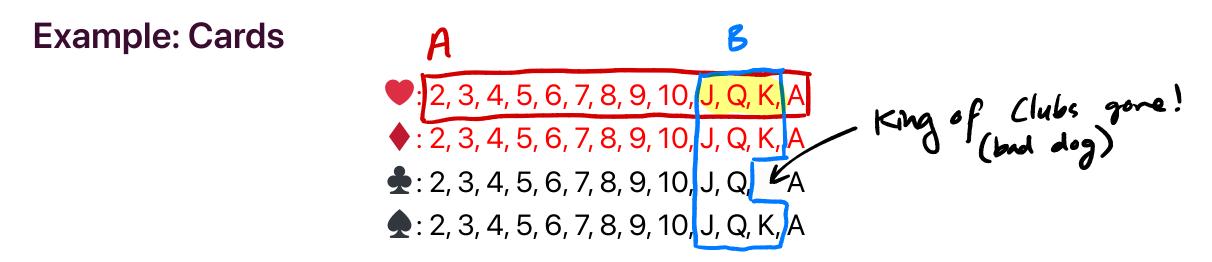
2. What percentage of UCSD students are DSC majors who eat avocado toast for breakfast?

$$P(Avo toast \cap DSC) = P(Avo toast) \cdot P(DSC) = 0.25 \cdot 0.01 = 0.025 = 0.25 \cdot 0.25 \cdot 0.01 = 0.025 = 0.25 \cdot 0.025 = 0.025 \cdot 0.025 \cdot 0.025 \cdot 0.025 = 0.025 \cdot 0.025 \cdot 0.025 \cdot 0.025 \cdot 0.025 = 0.025 \cdot 0.025$$

Conditional independence

Conditional independence

- Sometimes, events that are dependent **become** independent, upon learning some new information.
- Or, events that are independent can become dependent, given additional information.



• Your dog ate the King of Clubs. Suppose you draw one card from a deck of 51. $\circ (A \text{ i})$ the event that the card is a heart.

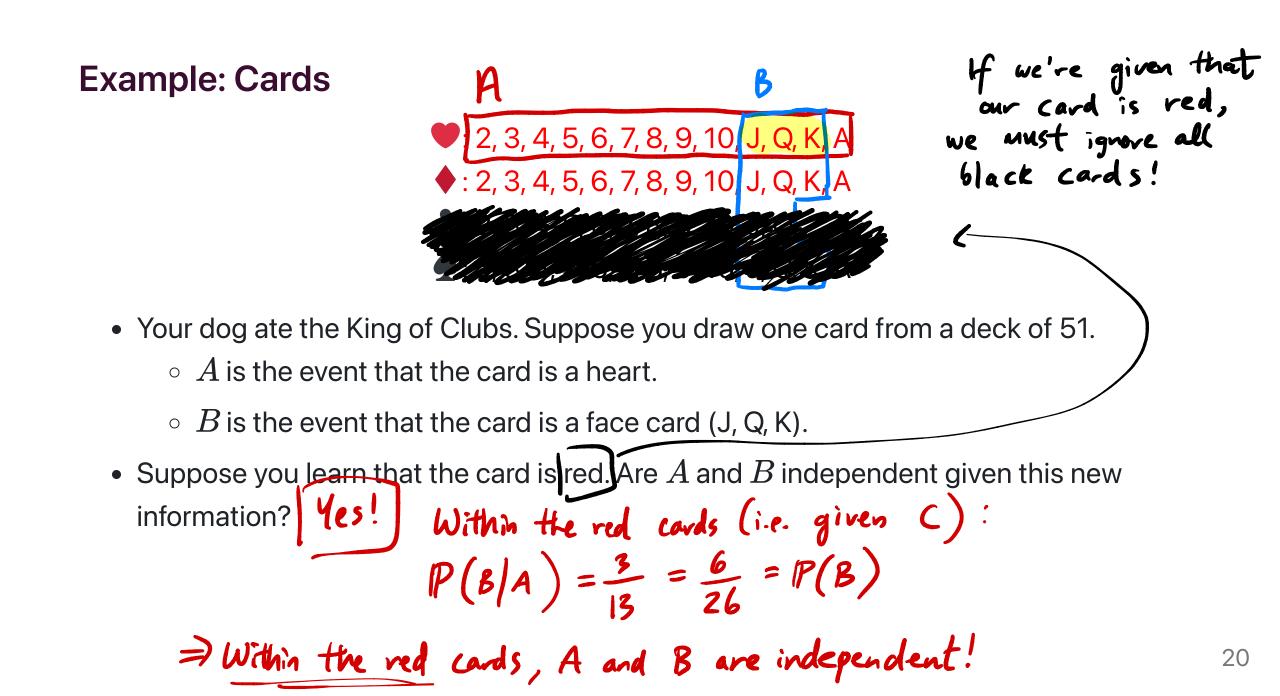
B is the event that the card is a face card (J, Q, K).

• Are \overline{A} and B independent? No!

 $P(B|A) = \frac{3}{13}$ $P(B) = \frac{11}{51}$, not the same!

Another interpretation:

$$P(A) = \frac{13}{51}$$
, $P(B) = \frac{11}{51}$,
 $P(A \cap B) = \frac{3}{51} \neq \frac{13}{51} \cdot \frac{11}{51} = P(A) \cdot P(B)$



Conditional independence

• Recall that A and B are independent if:

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

• A and B are **conditionally independent** given C if:

 $\mathbb{P}((A \cap B)|C) = \mathbb{P}(A|C) \cdot \mathbb{P}(B|C)$

- Given that C occurs, this says that A and B are independent of one another.

Practically, one way to check:

$$\frac{P(A \cap B \cap C)}{P(C)} = \frac{P(A \cap C)}{P(C)} \cdot \frac{P(B \cap C)}{P(C)}$$

comes from the definition of regular independence, but with "given C"

Assuming conditional independence

- Sometimes we assume that events are conditionally independent to make calculations easier.
- Real-world events are almost never exactly conditionally independent, but they may be close.

Example: Harry Potter and Discord

Suppose that 50% of UCSD students like Harry Potter and 80% of UCSD students use Discord. What is the probability that a random UCSD student likes Harry Potter and uses Discord, assuming that these events are conditionally independent given that a person is a UCSD student?

$$\left[P\left((\text{like HP n use Piscord}) \mid UCSD \right) = P\left(\text{like HP} \mid UCSD \right) \cdot P\left(\text{use Discord} \mid UCSD \right) \\
 = 0.5 \cdot 0.8 \\
 = \left(0.4 \right)
 \right)$$

Answer at q.dsc40a.com

- Is it reasonable to assume conditional independence of:
 - liking Harry Potter
 - \circ using Discord

given that a person is a UCSD student?

• Is it reasonable to assume independence of these events in general, among all people?

B. Conditional independence only.

Which assumptions do you think are reasonable?

A. Both.

C. Independence (in general) only. D. Neither.

Independence vs. conditional independence

In general, there is no relationship between independence and conditional independence. All four scenarios before are possible:

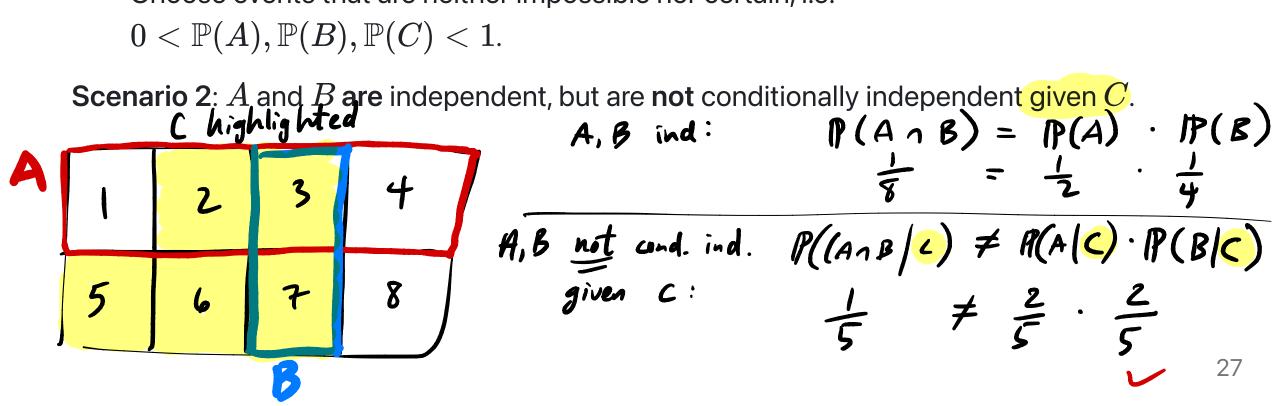
- 1. A and B are independent, and are conditionally independent given C.
- 2. A and B are independent, but are **not** conditionally independent given C.
- 3. A and B are **not** independent, but **are** conditionally independent given C.
- 4. A and B are **not** independent, and are **not** conditionally independent given C.

- Consider a sample space $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$ where all outcomes are equally likely.
- Specify events A,B, and C that satisfy the given conditions (e.g. $A=\{2,5,6\}$).
- Choose events that are neither impossible nor certain, i.e. $0 < \mathbb{P}(A), \mathbb{P}(B), \mathbb{P}(C) < 1$. $A = \{1, 2, 3, 4\}$ $B = \{3, 7\}$ $C = \{2, 3, 6, 7\}$

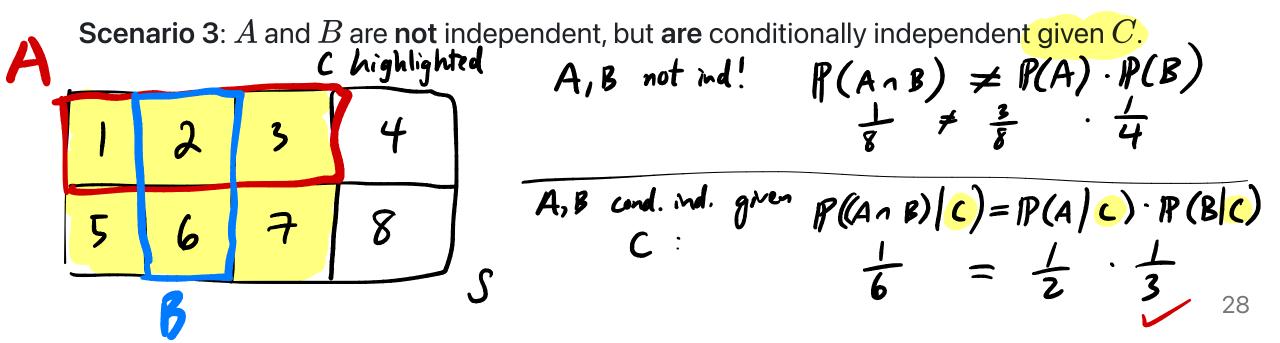
Scenario 1: A and B are independent, and are conditionally independent given C.

A 1 2 3 4 5 6 7 8 C highlighted B A, B ind: $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$ $\frac{1}{8} = \frac{1}{2} \cdot \frac{1}{4}$ $\mathbb{P}((A \cap B) c) = \mathbb{P}(A | c) \cdot \mathbb{P}(B | c)$ $\frac{1}{8} = \frac{1}{2} \cdot \frac{1}{2}$ $\frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2}$ 26

- Consider a sample space $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$ where all outcomes are equally likely.
- Specify events A, B, and C that satisfy the given conditions (e.g. $A = \{2, 5, 6\}$).
- Choose events that are neither impossible nor certain, i.e.

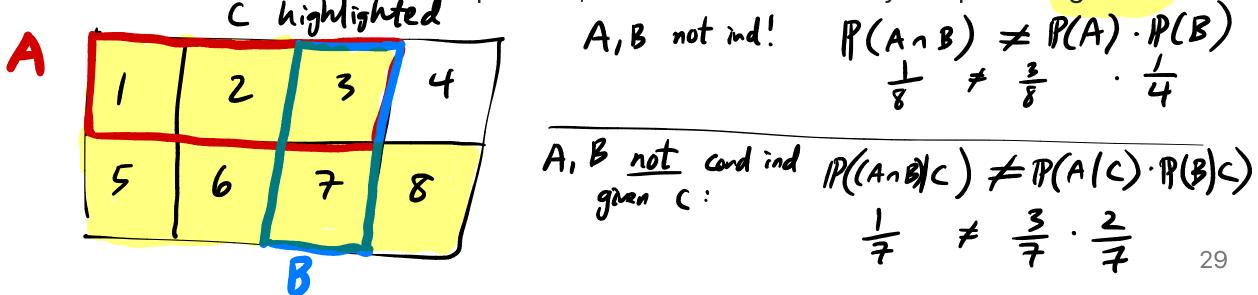


- Consider a sample space $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$ where all outcomes are equally likely.
- Specify events A, B, and C that satisfy the given conditions (e.g. $A = \{2, 5, 6\}$).
- Choose events that are neither impossible nor certain, i.e. $0 < \mathbb{P}(A), \mathbb{P}(B), \mathbb{P}(C) < 1.$



- Consider a sample space $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$ where all outcomes are equally likely.
- Specify events A, B, and C that satisfy the given conditions (e.g. $A = \{2, 5, 6\}$).
- Choose events that are neither impossible nor certain, i.e. $0 < \mathbb{P}(A), \mathbb{P}(B), \mathbb{P}(C) < 1.$

Scenario 4: A and B are not independent, and are not conditionally independent given C.



Summary

Summary

- Two events *A* and *B* are **independent** when knowledge of one event does not change the probability of the other event.
 - \circ Equivalent conditions: $\mathbb{P}(B|A) = \mathbb{P}(B)$, $\mathbb{P}(A|B) = \mathbb{P}(A)$, $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$.
- Two events A and B are **conditionally independent** given a third event, C, if they are independent given knowledge of event C.
 - $\circ \;$ Condition: $\mathbb{P}((A \cap B)|C) = \mathbb{P}(A|C) \cdot \mathbb{P}(B|C).$
- In general, there is no relationship between independence and conditional independence.
- Next time: Using Bayes' Theorem and conditional independence to solve the classification problem in machine learning.