Lecture 17

Naïve Bayes

DSC 40A, Spring 2024

Announcements

- Homework 7 is due tonight. New: You can use two slip days on it.
- Homework 8, the final homework, will be released tomorrow and will be due on Thursday, June 6th. New: You cannot use slip days on it, but it'll be max 3 questions.
- Make sure you've watched the recorded lecture from Tuesday and read the accompanying lecture note.
- Look at the solutions to last Monday's groupwork worksheet posted on Ed!
- Read the new Advice page written by the tutors.

The Final Exam is on Saturday, June 8th!

- The Midterm Exam is on Saturday, June 8th from 8-11AM.
 - You will receive a randomized seat assignment early next week.
- 180 minutes, on paper, no calculators or electronics.
 - You are allowed to bring two double-sided index cards (4 inches by 6 inches) of notes that you write by hand (no iPad).
- Content: All lectures (including next week), homeworks, and groupworks.
- We will have two review sessions. In each of them, the first hour will be a mock exam **which you will take silently on paper**; we will take up the problems in the second half.
 - Tuesday, June 4th, 5-7PM (empirical risk minimization and linear algebra).
 - Thursday, June 6th, 5-7PM (gradient descent and probability).
- Friday, June 7th, 4-9PM: office hours in HDSI 123.
- Prepare by practicing with old exam problems at practice.dsc40a.com.

Agenda

- Classification.
- Classification and conditional independence.
- Naïve Bayes.

Recap: Bayes Theorem', independence, and conditional independence

• Bayes' Theorem describes how to update the probability of one event, given that another event has occurred.

$$\mathbb{P}(B|A) = rac{\mathbb{P}(B) \cdot \mathbb{P}(A|B)}{\mathbb{P}(A)}$$

• A and B are **independent** if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

• A and B are **conditionally independent** given C if:

$$\mathbb{P}((A \cap B)|C) = \mathbb{P}(A|C) \cdot \mathbb{P}(B|C)$$

 In general, there is no relationship between independence and conditional independence.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

Classification

Classification problems

- Like with regression, we're interested in making predictions based on data (called training data) for which we know the value of the response variable.
- The difference is that the response variable is now **categorical**.
- Categories are called **classes**.
- Example classification problems:
 - Deciding whether a patient has kidney disease.
 - Identifying handwritten digits.
 - Determining whether an avocado is ripe.
 - Predicting whether credit card activity is fraudulent.
 - Predicting whether you'll be late to school or not.

color	ripeness
bright green	unripe 🗙
green-black	ripe 🔽
purple-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽
bright green	unripe 🗙
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽

You have a green-black avocado, and want to know if it is ripe.

Question: Based on this data, would you predict your avocado is ripe or unripe?

color	ripeness
bright green	unripe 🗙
green-black	ripe 🔽
purple-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽
bright green	unripe 🗙
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🗸

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

Strategy: Calculate two probabilities: $\mathbb{P}(ripe|green-black)$ $\mathbb{P}(unripe|green-black)$

Then, predict the class with a larger probability.

Estimating probabilities

- We would like to determine $\mathbb{P}(ripe|green-black)$ and $\mathbb{P}(unripe|green-black)$ for all avocados in the universe.
- All we have is a single dataset, which is a **sample** of all avocados in the universe.
- We can estimate these probabilities by using sample proportions.

 $\mathbb{P}(\text{ripe}|\text{green-black}) \approx rac{\# \text{ ripe green-black avocados in sample}}{\# \text{ green-black avocados in sample}}$

• Per the **law of large numbers** in DSC 10, larger samples lead to more reliable estimates of population parameters.

color	ripeness
bright green	unripe 🗙
green-black	ripe 🔽
purple-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽
bright green	unripe 🗙
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

 $\mathbb{P}(\mathrm{ripe}|\mathrm{green-black}) =$

 $\mathbb{P}(\text{unripe}|\text{green-black}) =$

Bayes' Theorem for Classification

• Suppose that A is the event that an avocado has certain features, and B is the event that an avocado belongs to a certain class. Then, by Bayes' Theorem:

$$\mathbb{P}(B|A) = rac{\mathbb{P}(B) \cdot \mathbb{P}(A|B)}{\mathbb{P}(A)}$$

• More generally:

$$\mathbb{P}(ext{class}| ext{features}) = rac{\mathbb{P}(ext{class}) \cdot \mathbb{P}(ext{features}| ext{class})}{\mathbb{P}(ext{features})}$$

- What's the point?
 - \circ Usually, it's not possible to estimate $\mathbb{P}(\text{class}|\text{features})$ directly.
 - $\circ\,$ Instead, we often have to estimate $\mathbb{P}(class), \mathbb{P}(features|class),$ and $\mathbb{P}(features)$ separately.

color	ripeness
bright green	unripe 🗙
green-black	ripe 🔽
purple-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽
bright green	unripe 🗙
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

$$\mathbb{P}(ext{class}| ext{features}) = rac{\mathbb{P}(ext{class}) \cdot \mathbb{P}(ext{features}| ext{class})}{\mathbb{P}(ext{features})}$$

color	ripeness
bright green	unripe 🗙
green-black	ripe 🔽
purple-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽
bright green	unripe 🗙
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

$$\mathbb{P}(ext{class}| ext{features}) = rac{\mathbb{P}(ext{class}) \cdot \mathbb{P}(ext{features}| ext{class})}{\mathbb{P}(ext{features})}$$

color	ripeness
bright green	unripe 🗙
green-black	ripe 🔽
purple-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽
bright green	unripe 🗙
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🔽
green-black	unripe 🗙
purple-black	ripe 🔽

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

 $\mathbb{P}(ext{class}| ext{features}) = rac{\mathbb{P}(ext{class}) \cdot \mathbb{P}(ext{features}| ext{class})}{\mathbb{P}(ext{features})}$

Shortcut: Both probabilities have the same denominator, so the larger probability is the one with the **larger numerator**.

 $\mathbb{P}(\mathrm{ripe}|\mathrm{green-black}) =$

 $\mathbb{P}(\text{unripe}|\text{green-black}) =$

Classification and conditional independence

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate $\mathbb{P}(ripe|features)$ and $\mathbb{P}(unripe|features)$ and choose the class with the larger probability.

 $\mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano})$ $\mathbb{P}(\text{unripe}|\text{firm, green-black, Zutano})$

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate $\mathbb{P}(ripe|features)$ and $\mathbb{P}(unripe|features)$ and choose the class with the larger probability.

Issue: We have not seem a firm green-black Zutano avocado before, which means that the following probabilities are undefined:

 $\mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano})$ $\mathbb{P}(\text{unripe}|\text{firm, green-black, Zutano})$

A simplifying assumption

- We want to find $\mathbb{P}(ripe|firm, green-black, Zutano)$, but there are no firm green-black Zutano avocados in our dataset.
- Bayes' Theorem tells us this probability is equal to:

 $\mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano}) = \frac{\mathbb{P}(\text{ripe}) \cdot \mathbb{P}(\text{firm, green-black, Zutano}|\text{ripe})}{\mathbb{P}(\text{firm, green-black, Zutano})}$

• Key idea: Assume that features are conditionally independent given a class (e.g. ripe).

 $\mathbb{P}(\text{firm, green-black, Zutano}|\text{ripe}) = \mathbb{P}(\text{firm}|\text{ripe}) \cdot \mathbb{P}(\text{green-black}|\text{ripe}) \cdot \mathbb{P}(\text{Zutano}|\text{ripe})$

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

 $\mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano}) = \frac{\mathbb{P}(\text{ripe}) \cdot \mathbb{P}(\text{firm, green-black, Zutano}|\text{ripe})}{\mathbb{P}(\text{firm, green-black, Zutano})}$

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

 $\mathbb{P}(\text{unripe}|\text{firm, green-black, Zutano}) = \frac{\mathbb{P}(\text{unripe}) \cdot \mathbb{P}(\text{firm, green-black, Zutano}|\text{unripe})}{\mathbb{P}(\text{firm, green-black, Zutano})}$

Conclusion

- The numerator of $\mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano})$ is $\frac{6}{539}$.
- The numerator of $\mathbb{P}(\text{unripe}|\text{firm, green-black, Zutano})$ is $\frac{6}{88}$.
- Both probabilities have the same denominator, $\mathbb{P}(\text{firm, green-black, Zutano})$.
- Since we're just interested in seeing which one is larger, we can ignore the denominator and compare numerators.
- Since the numerator for unripe is larger than the numerator for ripe, we predict that our avocado is unripe X.

Naïve Bayes

The Naïve Bayes classifier

- We want to predict a class, given certain features.
- Using Bayes' Theorem, we write:

$$\mathbb{P}(ext{class}| ext{features}) = rac{\mathbb{P}(ext{class}) \cdot \mathbb{P}(ext{features}| ext{class})}{\mathbb{P}(ext{features})}$$

- For each class, we compute the numerator using the **naïve assumption of conditional independence of features given the class**.
- We estimate each term in the numerator based on the training data.
- We predict the class with the largest numerator.
 - Works if we have multiple classes, too!

Dictionary

Definitions from Oxford Languages · Learn more

adjective

(of a person or action) showing a lack of experience, wisdom, or judgment. "the rather naive young man had been totally misled"

• (of a person) natural and <u>unaffected</u>; innocent. "Andy had a sweet, naive look when he smiled"

 of or denoting art produced in a straightforward style that deliberately <u>rejects</u> sophisticated artistic techniques and has a bold <u>directness</u> <u>resembling</u> a child's work, typically in bright colors with little or no perspective.

Example: Avocados, again

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Uh oh!

- There are no soft unripe avocados in the data set.
- The estimate $\mathbb{P}(\text{soft}|\text{unripe}) \approx \frac{\# \text{ soft unripe avocados}}{\# \text{ unripe avocados}}$ is 0.
- The estimated numerator:

 $\mathbb{P}(\mathrm{unripe}) \cdot \mathbb{P}(\mathrm{soft}, \mathrm{green-black}, \mathrm{Hass}|\mathrm{unripe}) = \mathbb{P}(\mathrm{unripe}) \cdot \mathbb{P}(\mathrm{soft}|\mathrm{unripe}) \cdot \mathbb{P}(\mathrm{green-black}|\mathrm{unripe}) \cdot \mathbb{P}(\mathrm{Hass}|\mathrm{unripe})$ is also 0.

- But just because there isn't a soft unripe avocado in the data set, doesn't mean that it's impossible for one to exist!
- Idea: Adjust the numerators and denominators of our estimate so that they're never 0.

Smoothing

• Without smoothing:

 $\mathbb{P}(\text{soft}|\text{unripe}) \approx \frac{\# \text{ soft unripe}}{\# \text{ soft unripe} + \# \text{ medium unripe} + \# \text{ firm unripe}} \\ \mathbb{P}(\text{medium}|\text{unripe}) \approx \frac{\# \text{ medium unripe}}{\# \text{ soft unripe} + \# \text{ medium unripe} + \# \text{ firm unripe}} \\ \mathbb{P}(\text{firm}|\text{unripe}) \approx \frac{\# \text{ firm unripe}}{\# \text{ soft unripe} + \# \text{ medium unripe} + \# \text{ firm unripe}} \\ \end{bmatrix}$

• With smoothing:

$$\begin{split} \mathbb{P}(\text{soft}|\text{unripe}) &\approx \frac{\# \text{ soft unripe} + 1}{\# \text{ soft unripe} + 1 + \# \text{ medium unripe} + 1 + \# \text{ firm unripe} + 1} \\ \mathbb{P}(\text{medium}|\text{unripe}) &\approx \frac{\# \text{ medium unripe} + 1}{\# \text{ soft unripe} + 1 + \# \text{ medium unripe} + 1 + \# \text{ firm unripe} + 1} \\ \mathbb{P}(\text{firm}|\text{unripe}) &\approx \frac{\# \text{ firm unripe} + 1}{\# \text{ soft unripe} + 1 + \# \text{ medium unripe} + 1} \end{split}$$

 When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

31

Example: Avocados, with smoothing

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Example: Avocados, with smoothing

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Summary

Summary

- In classification, our goal is to predict a discrete category, called a class, given some features.
- The Naïve Bayes classifier uses Bayes' Theorem:

$$\mathbb{P}(\text{class}|\text{features}) = rac{\mathbb{P}(\text{class}) \cdot \mathbb{P}(\text{features}|\text{class})}{\mathbb{P}(\text{features})}$$

- And works by estimating the numerator of $\mathbb{P}(\text{class}|\text{features})$ for all possible classes.
- It also uses a simplifying assumption, that features are conditionally independent given a class:

 $\mathbb{P}(\text{features}|\text{class}) = \mathbb{P}(\text{feature}_1|\text{class}) \cdot \mathbb{P}(\text{feature}_2|\text{class}) \cdot \dots$