
DSC 40A - Homework 1
due Friday, August 9th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Homeworks are due to Gradescope by 11:59PM on the due date.

Homework will be evaluated not only on the correctness of your answers, but on your ability to present
your ideas clearly and logically. You should always explain and justify your conclusions, using sound
reasoning. Your goal should be to convince the reader of your assertions. If a question does not require
explanation, it will be explicitly stated.

Homeworks should be written up and turned in by each student individually. You may talk to other
students in the class about the problems and discuss solution strategies, but you should not share any
written communication and you should not check answers with classmates. You can tell someone how to do
a homework problem, but you cannot show them how to do it. We encourage you type your solutions in
LATEX, using the Overleaf template on the course website.

For each problem you submit, you should cite your sources by including a list of names of other students
with whom you discussed the problem. Instructors do not need to be cited.

This homework will be graded out of 40 points. The point value of each problem or sub-problem is indicated
by the number of avocados ( ) shown.

Note: For Problems 6(a) and 6(c), you’ll need to code your answers in Python. More detailed instructions
are provided in Problem 6. Note that to submit the homework, you’ll have to submit your answers PDF to
the Homework 1 assignment on Gradescope, and submit your completed notebook hw01-code.ipynb to the
Homework 1, Problems 6(a) and 6(c) autograder on Gradescope.

Problem 1. Welcome Survey

Make sure to fill out the Welcome Survey, linked here for two points on this homework!
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https://forms.gle/qA5xnzXiNZc55nii6


Problem 2. The Proof is in the Pudding

In this problem, you’ll prove or disprove various statements about a dataset of numbers, y1, y2, ..., yn. But
first, let’s discuss the general approach. (Note that this problem looks long, but most of it is us explaining
how to answer it!

To prove that a statement is always true, you must provide some sort of reason as to why it is always true,
no matter what the values y1, y2, ..., yn are. For example, consider the statement:

“Suppose we add 5 to each of y1, y2, ..., yn. The mean of the new dataset must be greater than the mean of
the original dataset.”

This statement is always true, but it’s not enough just to say “This statement is always true; since we’re
adding a positive number to each value, the mean will also increase.” That’s good intuition to have, but we
need to provide a more rigorous justification. Here’s what a more rigorous justification might look like:

“The mean of the original dataset is ȳ = 1
n

∑n
i=1 yi. The mean of the new dataset is:

1

n

n∑
i=1

(yi + 5) =
1

n

(
n∑

i=1

yi +

n∑
i=1

5

)
=

1

n

(
n∑

i=1

yi + 5n

)
=

1

n

n∑
i=1

yi + 5 = ȳ + 5

Therefore, the mean of the new dataset is equal to the original dataset’s mean plus 5, so the mean of the
new dataset is greater than the mean of the original dataset, and so the statement is always true.”

Note that in the argument above, we didn’t assume anything specifically about the numbers in the original
dataset — we didn’t use a specific example. Just because a statement holds true for one example, doesn’t
mean it always holds true!

On the other hand, to disprove a statement, what you need to show is that it is not always true. The easiest
way to do this is to provide a counterexample, i.e. a set of values y1, y2, ..., yn where the statement is false.
For example, consider the statement:

“The smallest number in the dataset must be less than the mean.”

Valid justification might look like:

“This statement is not always true. For example, consider the case where our dataset only contains one
unique number, like 8, 8, 8. Here, the mean is 8 and the smallest number is 8, so the smallest number is not

less than the mean, and so the statement is not always true.”

This is a counterexample, and is a sufficient disproof. (Fun fact: there exist entire books about counterex-
amples!)

Note that in both of the examples above, our answers clearly stated whether or not we thought the statement
was always true. Your answers should do the same.

Now it’s your turn! Consider a dataset of numbers y1, y2, ..., yn. Prove or find a counterexample to disprove
each of the following statements.

a) At least half of the numbers in the dataset must be smaller than the mean.

b) Suppose that all of the elements in the dataset are unique. Then, removing the largest element
in the dataset must increase the mean.

c) Suppose that all of the elements in the dataset are unique, that n is odd, and that the mean of
the dataset is not equal to the median of the dataset. Then, if we remove the median value from the
dataset, the median of the new dataset must be different from the median of the original dataset.

d) Suppose we introduce a new number to the dataset that is greater than the mean of the existing
dataset. The mean of the new dataset must be greater than the mean of the original dataset.
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https://math.stackexchange.com/questions/279347/counterexample-math-books


Problem 3. Linear Functions

Consider the linear function f(x) = 9x− 4.

a) If a ≤ b, show that f(a) ≤ f(b).

b) Both of the statements below are true, but only one is a consequence of the property you proved
in part (a). Which is it? Show that this statement is true, using the result of part (a).

1. Mean(f(x1), . . . , f(xn)) = f(Mean(x1, . . . , xn))

2. Median(f(x1), . . . , f(xn)) = f(Median(x1, . . . , xn))

c) Now, prove the other statement.

d) Suppose we consider a different linear function g(x) = −2x + 5. Prove or find a counterexample to
disprove each of the following:

1. If a ≤ b, then g(a) ≤ g(b).

2. Mean(g(x1), . . . , g(xn)) = g(Mean(x1, . . . , xn))

3. Median(g(x1), . . . , g(xn)) = g(Median(x1, . . . , xn))

Problem 4. Prata’s Idea

In Lecture 2, we found that h∗ = Median(y1, y2, ..., yn) is the constant prediction that minimizes mean
absolute error:

Rabs(h) =
1

n

n∑
i=1

|yi − h|

Your friend Prata thinks that instead of minimizing the mean absolute error, we’d get a better constant
prediction if we minimized the product of the absolute errors:

Pabs(h) =

n∏
i=1

|yi − h|

The above formula is written using product notation, which is similar to summation notation, except terms
are multiplied and not added. For example,

n∏
i=1

ai = a1 · a2 · a3 · . . . · an

In this problem, we’ll see if Prata has a good idea.

a) Without using a calculator or computer, graph Pabs(h) for the dataset y1 = −3, y2 = 4.

b) For an arbitrary data set y1, y2, . . . , yn, what value(s) h
∗ minimize Pabs(h)? Discuss the pros

and cons of using Prata’s prediction strategy. What factors about the data set or application will
influence whether this prediction strategy gives good predictions?
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Problem 5. An Alternative

In Lecture 2, we found that h∗ = Mean(y1, y2, ..., yn) is the constant prediction that minimizes mean squared
error:

Rsq(h) =
1

n

n∑
i=1

(yi − h)2

To arrive at this result, we used calculus: we took the derivative of Rsq(h) with respect to h, set it equal to
0, and solved for the resulting value of h, which we called h∗.

In this problem, we will minimize Rsq(h) in a way that doesn’t use calculus. The general idea is this: if
f(x) = (x− c)2 + k, then we know that f is a quadratic function that opens upwards with a vertex at (c, k),
meaning that x = c minimizes f . As we saw in class (see Lecture 2, slide 8), Rsq(h) is a quadratic function
of h!

Throughout this problem, let y1, y2, ..., yn be an arbitrary dataset, and let ȳ = 1
n

∑n
i=1 yi be the mean of the

ys.

a) What is the value of
∑n

i=1(yi − ȳ)? Justify your answer.

b) Show that:

Rsq(h) =
1

n

n∑
i=1

(
(yi − ȳ)2 + 2(yi − ȳ)(ȳ − h) + (ȳ − h)2

)
Hint: To proceed, start by rewriting yi − h in the definition of Rsq(h) as (yi − ȳ) + (ȳ − h). Why is
this a valid step? Make sure not to expand unnecessarily.

c) Show that:

Rsq(h) =
1

n

n∑
i=1

(yi − ȳ)2 + (ȳ − h)2

Hint: At some point, you will need to use your result from part (a).

d) Why does the result in (c) prove that h∗ = Mean(y1, y2, ..., yn) minimizes Rsq(h)?
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https://dsc40a.com/resources/lectures/lec02/lec02-filled.pdf#page=8


Problem 6. Gaussian Location

Historical background (not necessary to solve the problem, but interesting):

Carl Friedrich Gauss was a German mathematician born in the 18th century, who is credited for several key
ideas in mathematics that you’re familiar with. For one, Gaussian elimination (also known as row reduction)
in linear algebra is named after him. He’s also credited for being the first person to minimize mean squared
error — he did so to build a model to predict the locations of planets in the night sky.

Perhaps the most famous story involving Gauss is one from when he was just a child. His teacher, supposedly,
asked him to add the integers from 1 through 100, expecting it to take him a while. However, within just
a few seconds, he gave the answer 5050. In this problem, you’ll use his insights to help you solve a DSC
20-style algorithmic problem efficiently.

The actual problem:

Here, we’ll solve the “missing value problem.” Suppose vals is a list of length n− 1, containing the integers
from 1 to n, inclusive, with no duplicates and in unsorted order, but with exactly 1 value missing. Your
job is to write a function that finds the missing integer in vals. For example, if vals = [1, 2, 5, 3], the
missing integer is 4.

Parts (a) and (c) of this problem will require you to write code in this supplementary Jupyter
Notebook. The code that you write in that notebook is autograded, both using public test
cases that you can see in the notebook and hidden test cases that will only be run after you
submit on Gradescope.

To submit your homework, in addition to submitting your answers PDF to the Homework 1
assignment on Gradescope, also submit hw01-code.ipynb to the Homework 1, Problems 6(a)
and 6(c) autograder on Gradescope and wait until you see all public test cases pass!

a) In the linked supplementary notebook, complete the implementation of the function missing value naive.
There’s nothing you need to include in your answers PDF for this part.

b) Your implementation of missing value naive didn’t need to be particularly efficient. To
make our solution to the missing value problem more efficient, we’ll use the fact that the missing
value is the difference between the sum we’d expect if none of the values were missing, and the sum
of the values we actually have. For example, if vals = [1, 2, 5, 3], then n = 5, so the sum we’d
expect is 1+2+3+4+5 = 15, and so the missing value is (1+2+3+4+5)−(1+2+5+3) = 15−11 = 4.

To find the expected sum, instead of using a for-loop or something like sum(range(1, n+1)), we can
turn to Gauss to make things even faster. Let’s look at how he quickly derived that 1+2+...+99+100 =
5050. Your job will then be to generalize what he did to 1 + 2 + ... + n, and find a formula for the
sum of the first n positive integers.

Let S100 = 1 + 2 + ...+ 99 + 100. Gauss wrote out S100 in two different ways:

S100 = 1 + 2 + 3 + · · · + 98 + 99 + 100

S100 = 100 + 99 + 98 + · · · + 3 + 2 + 1

Then, he noticed that each vertical pair of terms — 1 and 100, 2 and 99, 3 and 98, and so on, until
100 and 1 — each summed to 101. By adding the two lines above, he saw:

2S100 = 101 + 101 + 101 + ...+ 101 + 101 + 101

Since there were 100 terms in each of the original equations for S100, there were 100 terms equal to
101 in the equation above for 2S100. This let him solve for S100:
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=homeworks/hw01/hw01-code.ipynb
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=homeworks/hw01/hw01-code.ipynb


2S100 = 101 + 101 + 101 + ...+ 101 + 101 + 101

2S100 = 100 · 101

S100 =
100 · 101

2
= 50 · 101 = 5050

Now, it’s your turn. Let Sn = 1 + 2 + ... + n. Find a closed-form expression for Sn, for any integer
n ≥ 1, and show your work. Your answer will be an arithmetic expression involving n; for example,
an incorrect answer in the correct format could be 4n3.

Hint: This problem may seem daunting at first, but most of the work has already been done for you.
What you need to do is repeat Gauss’ work, but with an arbitrary integer n instead of 100. When you
expand Sn twice, the way that Gauss expanded S100 twice, what is the sum of each vertical pair of
terms? How many such terms are there? Verify that your answer is correct by testing it out on 1+ 2,
1 + 2 + 3, 1 + 2 + 3 + 4, etc.

c) In the linked supplementary notebook, complete the implementation of the function missing value fast.
There’s nothing you need to include in your answers PDF for this part.
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