
DSC 40A - Homework 4
Due: Tuesday, August 20th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Homeworks are due to Gradescope by 11:59PM on the due date.

Homework will be evaluated not only on the correctness of your answers, but on your ability to present
your ideas clearly and logically. You should always explain and justify your conclusions, using sound
reasoning. Your goal should be to convince the reader of your assertions. If a question does not require
explanation, it will be explicitly stated.

Homeworks should be written up and turned in by each student individually. You may talk to other
students in the class about the problems and discuss solution strategies, but you should not share any
written communication and you should not check answers with classmates. You can tell someone how to do
a homework problem, but you cannot show them how to do it. We encourage you type your solutions in
LATEX, using the Overleaf template on the course website.

For each problem you submit, you should cite your sources by including a list of names of other students
with whom you discussed the problem. Instructors do not need to be cited.

This homework will be graded out of 26 points. The point value of each problem or sub-problem is indicated
by the number of avocados shown.

• Please remember assign pages to questions when you upload your submission to Gradescope. This
really helps our graders.

• For all of Problem 5, you’ll need to code your answers in Python. More detailed instructions are
provided in Problem 5. Note that to submit the homework, you’ll have to submit your answers PDF to
the Homework 4 assignment on Gradescope, and submit your completed notebook hw04-code.ipynb

to the Homework 4, Problem 5 autograder on Gradescope.

Problem 1. Reflection and Feedback Form

Make sure to fill out this Reflection and Feedback Form, linked here for three points on this homework!
This form is primarily for your benefit; research shows that reflecting and summarizing knowledge helps you
understand and remember it.

Problem 2. Same, but Different

In Lecture 5, we were introduced to one of many formulas for the optimal slope, w∗
1 , and optimal intercept,

w∗
0 , for the simple linear regression model H(x) = w0 + w1x when using squared loss:

w∗
1 = r

σy

σx
w∗

0 = ȳ − w∗
1 x̄

Then, in Lecture 8, we revisited the simple linear regression model in terms of linear algebra. WhenX ∈ Rn×2

is the design matrix, y⃗ ∈ Rn is the observation vector, and w⃗ ∈ R2 is the parameter vector, we found that
the optimal parameter vector w⃗∗ is one that satisfies the normal equations:

XTXw⃗ = XT y⃗

When XTX is invertible, w⃗∗ can be expressed as:
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w⃗∗ = (XTX)−1XT y⃗

In this problem, we will prove that both of these formulations are equivalent, for any dataset (x1, y1), (x2, y2),
..., (xn, yn). Specifically, we’ll show that the vector w⃗∗ = (XTX)−1XT y has two components, the first of
which is w∗

0 and the second of which is w∗
1 . (To do this, we’ll need to assume that (XTX)−1 is invertible.)

Note that on first glance, it looks like this problem is quite long, since it has seven subparts. However, the
subparts are meant to guide you through the proof. (The problem would take much longer if we just said
“prove it!”)

a) Express the vector XT y⃗ using constants and/or summations involving xi and/or yi. Make sure
that your answer has the correct dimensions.

b) Express the matrix XTX using constants and/or summations involving xi and/or yi. Make sure
that your answer has the correct dimensions.

c) Recall, if M =

[
a b
c d

]
is a 2× 2 matrix, then the inverse of M is given by:

M−1 =
1

ad− bc

[
d −b
−c a

]
Express the matrix (XTX)−1 using constants and/or summations involving xi and/or yi.

d) At this point, the expressions you have for (XTX)−1 and XT y likely involve many summation
notations and look... complicated. Let’s take a step back and simplify things before we proceed.

Prove that:

n∑
i=1

x2
i = nσ2

x + nx̄2

Hint: Start with the definition of σ2
x and expand the sum.

e) Using your work in (c) and (d), prove that:

(XTX)−1 =
1

nσ2
x

[
σ2
x + x̄2 −x̄
−x̄ 1

]

f) (XTX)−1 is about as simplified as it can be for now. But, before we multiply (XTX)−1 and

XT y, we should deal with the fact that at least one of the components in the vector XT y⃗ still involves
a summation.

Prove that:

n∑
i=1

xiyi = nrσxσy + nx̄ȳ

g) Now, put it all together. That is, prove that:

(XTX)−1XT y⃗ =

[
ȳ − r

σy

σx
x̄

r
σy

σx

]
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Note that the second component of the vector above is w∗
1 = r

σy

σx
and the first component of the vector

above is w∗
0 = ȳ − r

σy

σx
x̄ = ȳ − w∗

1 x̄, as we first saw in Lecture 5! This concludes our proof that both
formulations of the optimal parameters of the simple linear regression model are equivalent.

Problem 3. Sums of Residuals

In this problem, we will prove that the sum of the residuals of a fit regression model is 0.

We define the ith residual to be the difference between the actual and predicted values for individual i in
our dataset, when the predictions are made using a regression model whose coefficients w∗

0 and w∗
1 (or, for

multiple linear regression models, w∗
0 , w

∗
1 , w

∗
2 , ..., w

∗
d) are all optimal. In other words, the ith residual ei is:

ei = yi −H∗(xi)

We use the letter e for residuals because residuals are also known as errors.

We’ll get to the proof soon, but first, a warmup.

a) Suppose 1⃗ ∈ Rn is a vector containing the value 1 for each element, i.e. 1⃗ =


1
1
...
1

.

For any other vector b⃗ =


b1
b2
...
bn

, what is the value of 1⃗T b⃗, i.e. what is the dot product of 1⃗ and b⃗?

b) Back to the main problem at hand.

Consider the typical multiple regression scenario where our hypothesis function has an intercept term:

H(x⃗) = w0 + w1x
(1) + w2x

(2) + ...+ wdx
(d)

Note that another way of writing the ith residual, ei = yi −H∗(xi), is:

ei = (y⃗ −Xw⃗∗)i

Here, X is a n × (d + 1) design matrix, y⃗ ∈ Rn is an observation vector, and w⃗ ∈ R(d+1) is the
parameter vector. We’ll use w⃗∗ to denote the optimal parameter vector, or the one that satisfies the
normal equations. (y⃗ −Xw⃗∗)i is referring to element i of the vector y⃗ −Xw⃗∗.

Using facts about w⃗∗ we learned in Lectures 7 and 8, prove that for multiple linear regression models
with an intercept term, the sum of the residuals is 0. That is, prove that:

n∑
i=1

ei = 0

Hint: Refer to the derivation of w⃗∗ in Lectures 7 and 8. How did we define X? Your proof should not
be very long.

c) Now suppose our hypothesis function does not have an intercept term, but is otherwise linear
with multiple features:

H(x⃗) = w1x
(1) + w2x

(2) + ...+ wdx
(d)
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1. Is it still guaranteed that

n∑
i=1

ei = 0? Why or why not?

2. Is it still possible that

n∑
i=1

ei = 0? If you believe the answer is yes, come up with a simple example

where a linear hypothesis function without an intercept has residuals that sum to 0. If you believe
the answer is no, state why not.

Problem 4. Real Estate

You are given a data set containing information on recently sold houses in San Diego, including

• square footage

• number of bedrooms

• number of bathrooms

• year the house was built

• asking price, or how much the house was originally listed for, before negotiations

• sale price, or how much the house actually sold for, after negotiations

The table below shows the first few rows of the data set. Note that since you don’t have the full data set,
you cannot answer the questions that follow based on calculations; you must answer conceptually.

House Square Feet Bedrooms Bathrooms Year Asking Price Sale Price

1 1247 3 3 2005 500,000 494,000
2 1670 3 2 1927 1,000,000 985,000
3 716 1 1 1993 335,000 333, 850
4 1600 4 2 1962 830,000 815,000
5 2635 4 3 1993 1,250,000 1,250,000
...

...
...

...
...

...
...

a) First, suppose we fit a multiple linear regression model to predict the sale price of a house
given all five of the other variables. Which feature would you expect to have the largest magnitude
weight? Why? (Note that the weight of a feature is the value of w∗ for that feature.)

Then, suppose we standardize each variable separately, i.e. we convert each variable to standard units.
(Recall, to convert a variable to standard units, we replace each value xi with

xi−x̄
σx

.) Suppose we fit
another multiple linear regression model to predict the sale price of a house given all five of the other
standardized variables. Now, which feature would you expect to have the largest magnitude weight?
Why?

b) Suppose we fit a multiple linear regression model to predict the sale price of a house given
all five of the other variables in their original, unstandardized form. Suppose the weight for the Year
feature is α.

Now, suppose we replace Year with a new feature, Age, which is 0 if the house was built in 2024, 1
if the house was built in 2023, 2 if the house was built in 2022, and so on. If we fit a new multiple
linear regression model on all five variables, but using Age instead of Year, what will the weight for
the Age feature be, in terms of α?
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c) Now, suppose we fit a multiple linear regression model to predict the sale price of a house given
all five of the other variables, plus a new sixth variable named Rooms, which is the total number of
bedrooms and bathrooms in the house. Will our new regression model with an added sixth feature
make better predictions than the models we fit in (a) or (b)?

Problem 5. Billy the Waiter

This problem is formatted slightly differently. The entire problem is contained in a supplemental Jupyter
Notebook, which you can access at this link. This problem is entirely autograded; once you’ve finished, make
sure to submit your hw04-code.ipynb notebook to the Homework 4, Problem 5 autograder on Gradescope.

Note that this problem is worth a total of 14 points, split across 6 parts.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=homeworks/hw04/hw04-code.ipynb

