Lecture 2

Empirical Risk Minimization

DSC 40A, Summer 2024



Announcements

e Remember, there is no Canvas: all information is at dsc40a.com.
o Please fill out the Welcome Survey if you haven't already.

e Homework 1 is release, and is due on Friday, August 9th.
o We will soon release an Overleaf template, where you can type your solutions
using LT'EX.
o This is optional for most homeworks, but required for Homework 2, because it's a
good skill to have.

Look at the office hours schedule here and plan to start regularly attending!

e There are now readings linked on the course website for the next few weeks - read
them for supplementary explanations.
o They cover the same ideas, but in a different order and with different examples.


https://dsc40a.com/
https://forms.gle/qA5xnzXiNZc55nii6
https://www.overleaf.com/learn/how-to/How_do_I_use_Overleaf%3F
https://dsc40a.com/calendar

Agenda

e Recap: Mean squared error.
e Minimizing mean squared error.

Another loss function.

e Minimizing mean absolute error.

A practice exam problem (time permitting).



DK

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform




Overview

Commuting Time vs. Home Departure Time
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Home Departure Time (AM)

o We started by introducing the idea of a
hypothesis function, H ().

o We looked at two possible models:
o The constant model, H(z) = h.

o The simple linear regression model,
H(x) = wy + wiz.
o We decided to find the best constant

prediction to use for predicting
commute times, in minutes.



Mean squared error

e Let's suppose we have just a smaller dataset of just five historical commute times in
minutes.

Yy = 72 yo = 90 ys = 61 Yqs = 85 Y5 = 92

e The mean squared error of the constant prediction A is:

Ry (h) = %((72 — h)? + (90 — k)% + (61 — h)* + (85 — h)? + (92 — h)?)

e For example, if we predict h = 100, then:

1
R..(100) = = ((72 — 100)? + (90 — 100)? + (61 — 100)? + (85 — 100)? + (92 — 100)?
q 5

—|538.8

« We can pick any h as a prediction, but the smaller Ry, (h) is, the better h is!



Visualizing mean squared error
Ryq(h) = 5 ((72 = h)* + (90 — h)* + (61 — h)* + (85 — h)* + (92 — h)?)
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Which h corresponds to the vertex of Ry, (h)?



The best prediction

e Suppose we collect n commute times, y1, Y2, .., Yn.

The mean squared error of the prediction h is:

qu(h) -

We want the best prediction, h*.
The smaller Ry (h) is, the better h is.

Goal: Find the h that minimizes Rgq(h).
The resulting h will be called ~A*.

How do we find h*?



error
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Minimizing using calculus

We'd like to minimize:

In order to minimize Ry (h), we:

1.take its derivative with respect to h,

2.set it equal to O,

3. solve for the resulting A*, and
4. perform a second derivative test to ensure we found a minimum.

11



Step O: The derivative of (y; — h)2

e Remember from calculus that:

o if¢(x) = a(x) + b(x), then

o %c(a:) — %CL(CIZ) - %b(x)

» This is relevant because Ry (k) = = Y7 ; (y; — h)? involves the sum of n
individual terms, each of which involve h.

e So, to take the derivative of Ry, (h), we'll first need to find the derivative of (y; — h)?.

L (y; — h)* =

12
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Which of the following is & Ry (h)?

e AO

8-2?211%2

C.o X (yi — h)
D. 5 32 (i — h)
E. _% > i1 (yi — h)
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Step 1: The derivative of R, (h)
d d

d_hRSq(h) —

14



Steps 2 and 3: Set to 0 and solve for the minimizer, h*
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Step 4: Second derivative test

Ryg(h) = £ ((72 = h)* + (90 — h)* + (61 — h)* + (85 — h)* + (92 — h)?)
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We already saw that R, (h) is convex,
i.e. that it opens upwards, so the h* we
found must be a minimum, not a
maximum.
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The mean minimizes mean squared error!

e The problem we set out to solve was, find the h* that minimizes:

Rug(h) = 23 (s — h?

n

e The answer is:
h* = Mea’n(yla Y2, ... 7yn)
e The best constant prediction, in terms of mean squared error, is always the mean.

e We call h* our optimal model parameter, for when we use:
o the constant model, H(x) = h, and

o the squared loss function, Lg,(y;, h) = (y; — h)*.

17



Aside: Notation

Another way of writing

1 n
h* is the value of h that minimizes — Z(yz — h)?

n

IS

h* is the solution to an optimization problem.



The modeling recipe

We've implicitly introduced a three-step process for finding optimal model parameters (like
h*) that we can use for making predictions:
1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

19
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What questions do you have?

20


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

A



Another loss function

o Last lecture, we started by computing the error for each of our ,but ran into
the issue that some errors were positive and some were negative.

€ =Yi—

e The solution was to square the errors, so that all are non-negative. The resulting loss
function is called squared loss.

LSQ(y’i7 ) — (yz — )2
o Another loss function, which also measures how far H (x;) is from y;, is absolute
loss.
Labs(yi7 ) — |yz — ’

22



Squared loss vs. absolute loss

For the constant model, H(ZIZZ) — h, so we can simplify our loss functions as follows:
e Squared loss: Lgq(yi, /1) = (y; — 1)
o Absolute loss: L,ps(yi, 1) = |y; — 1.

Consider, again, our example dataset of five commute times and the
Y1 = 72 y2 = 90 ys = 61 Ys = 85 Ys = 92
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Squared loss vs. absolute loss

e When we use squared loss, h* is the point at which the average squared loss is
minimized.

e When we use absolute loss, h* is the point at which the average absolute loss is
minimized.

o 72, © 00

60 65 70 75 80 85 90



Mean absolute error

e Suppose we collect n commute times, y1, Y2, .., Yn.

e The average absolute loss, or mean absolute error (MAE), of the prediction A is:

1 n
Raps(h) = — > [yi — h]
1=1

We'd like to find the best prediction, h*.

Previously, we used calculus to find the optimal model parameter A* that minimized
qu — that is, when using squared loss.

o Can we use calculus to minimize R,ps(h), too?

25
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Minimizing using calculus, again

We'd like to minimize:

In order to minimize R,ps(h), we:

1.take its derivative with respect to h,

2.set it equal to O,

3. solve for the resulting A*, and
4. perform a second derivative test to ensure we found a minimum.

27



Step O: The derivative of |y; — h|

lyi— h|

h-

Remember that |x| is a piecewise linear function

of x:
T x>0
z| =<0 =0
-z <0
So, |y; — h/| is also a piecewise linear function of
h:
yi—h h <y
yi —h[= 40 yi =h
h—yi h>y;
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Step O: The "derivative" of |y; — h|

yih{

o d
y—h Whatis = |y; — h|?

h-

i

yi—h h<y;
0 y; = h
h—vy; h>vy;
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Step 1: The "derivative" of R, (h)
d d

. ash —
thb() dh
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Steps 2 and 3: Set to 0 and solve for the minimizer, h*
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The median minimizes mean absolute error!

e The new problem we set out to solve was, find the A™* that minimizes:
1 n
Raps(h) == |yi — h
abS( ) n ’yz |

e The answer is:

h* = Median(yl, Yz, ... 7yn)

e This is because the median has an equal number of data points to the left of it and to
the right of it.

« To make a bit more sense of this result, let's graph Rps(h).

32



Visualizing mean absolute error
Consider, again, our example
Raps(h) = 5(172 = h| + 190 — h| + |61 — h| + |85 — A| + |92 — h|) dataset of five commute times.
72,90,61, 85,92
20- Where are the "bends" in the

graph of R.ps(h) - thatis,
where does its slope change?

Rabs (h)

15+
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Visualizing mean absolute error, with an even number of points

Rups(h) = £(172 = b + 190 — ] + |61 — h| + 185 — h| + [92 — ] + |75 — hl) What if we add a sixth data
a point?
B 72,90,61,85,92,75
% Is there a unique h*?
oS

154

10

T T T T T
60 70 80 90 100
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The median minimizes mean absolute error!

e The new problem we set out to solve was, find the A™* that minimizes:
1 n
Raps(h) == |yi — h
abS( ) n ’yz |

e The answer is:
h* = Median(y1,y2,---,Yn)
o The best constant prediction, in terms of mean absolute error, is always the median.
o When n is odd, this answer is unique.

o When n is even, any number between the middle two data points (when sorted)
also minimizes mean absolute error.

o When 1 is even, define the median to be the mean of the middle two data points.
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The modeling recipe, again
We've now made two full passes through our "modeling recipe."

1. Choose a model.

2.Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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Empirical risk minimization

e The formal name for the process of minimizing average loss is empirical risk
minimization.

o Another name for "average loss" is empirical risk.

 When we use the squared loss function, Lgq(y;, h) = (y; — h)?, the corresponding
empirical risk is mean squared error:
1 n

Ry(h) = — Z(yz —h)?

n -

e When we use the absolute loss function, Lans(y;, h) = |y; — h|, the corresponding

empirical risk is mean absolute error:

1 n
Raps(h) = — > [yi — h]
1=1



Empirical risk minimization, in general

Key idea: If L(yz-, h) is any loss function, the corresponding empirical risk is:

R(W) =+ Ly, b

38
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What questions do you have?
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Summary, next time

e h* = Mean(y1,y2, ..., Y,) minimizes mean squared error,
Ryq(h) = % > i1 (yi — h)?.
e h* = Median(y1,y2, - - - , Y» ) Minimizes mean absolute error,

Raps(h) = % Z?:l ly; — hl.
e Ry (h)and Raps(h) are examples of empirical risk - that is, average loss.

o Next time: What's the relationship between the mean and median? What is the
significance of Rgq(h*) and Raps(h*)?

40
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An exam problem? Already?

e Homework 1 is going to be released tomorrow.

e |Init, you'll be asked to show or prove that various facts hold true — but you may have
never done this before!

e To help you practice, we'll walk through an old exam problem together.

o We'll be releasing another problem walkthrough video sometime over the weekend,
that also shows you how to use the Overleaf template and type up your solutions.
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Define the extreme mean (EEM) of a dataset to be the average of its largest and smallest
values. Let f(z) = —3z + 4.

Show that forany dataset 1 < 9 <...< x,,

EM(f(z1), f(z2),. .., f(zn)) = fF(EM(z1, 29, ..., 2n))
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