Lecture 4

Simple Linear Regression

DSC 40A, Summer 2024



Announcements

e Homework 1 is due tomorrow night.
o Before working on it, watch the Walkthrough Videos on problem solving and using
Overleaf.

o Using the Overleaf template is required for Homework 2 (and only Homework 2).
e Look at the office hours schedule here and plan to start regularly attending!

e Remember to take a look at the supplementary readings linked on the course website.


https://www.youtube.com/playlist?list=PLDNbnocpJUhYtg3s2__3pbh1kNKYxXaFM
https://dsc40a.com/calendar

Agenda

e Recap: Center and spread.
e Simple linear regression.

e Minimizing mean squared error for the simple linear model.



DK

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/




The relationship between h* and R(h*)

e Recall, for a general loss function L and the constant model H(xz) = h, empirical risk
is of the form:

R(R) = =3 L(y,h)

e h*, the value of h that minimizes empirical risk, represents the center of the dataset in
some way.

. R(h*), the smallest possible value of empirical risk, represents the spread of the
dataset in some way.

e The specific center and spread depend on the choice of loss function.



Examples

When using squared loss: When using absolute loss:
* * 1
e h* = Mean(y1,¥y2,---,Yn)- e h* = Median(y1,y2,---,Yn).
e Ry (h*) = Variance(y1,y2,..-,Yn). * Raps(h*) = MAD from the median.
Roq(h) = 572 = b + (90 = I + (61 = h)* + (85 — ) + (92 = h)?) Rups () = L(172 = | + 190 — h| + |61 — h| + [85 — h| + 92 — h])
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Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted y.
Parameters define the relationship between the input and output of a hypothesis function.

The simple linear regression model, H(x) = wg + w1, has two parameters: wg and w1.

H(x)=-14+12x H(x)=170-11x
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The modeling recipe

1. Choose a model.

2.Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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Minimizing mean squared error for the simple linear model

o We'll choose squared loss, since it's the easiest to minimize.

e Our goal, then, is to find the linear hypothesis function H *(z) that minimizes
empirical risk:

Ry(H) == (yi — H(z:))*

n <

e Since linear hypothesis functions are of the form H(a:) = Wy + w1, we can re-write
R as afunction of wg and wy:

Ryq(wo, wr) = i Z (yi — (wo + wlwi))z

n

 How do we find the parameters w; and w7} that minimize R, (wq, w1)?



Loss surface

For the constant model, the graph of What does the graph of qu(’wo, wl) look
R, (h) looked like a parabola. like for the simple linear regression model?
Ryq(h) = £((72 = h)* + (90 — h)? + (61 — h)* + (85 — h)* + (92 — h)*)
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error for the simple linear

1S



Minimizing multivariate functions

e QOur goalisto find the parameters 'wz") and w’{ that minimize mean squared error:

Rsq(wo, w1) = - i (i — (wo + wiz;))°

n 4

o Ry isafunction of two variables: wg and w;.

e To minimize a function of multiple variables:
o Take partial derivatives with respect to each variable.

o Set all partial derivatives to O.
o Solve the resulting system of equations.

o Ensure that you've found a minimum, rather than a maximum or saddle point
(using the second derivative test for multivariate functions).
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https://math.stackexchange.com/questions/2058469/how-can-we-minimize-a-function-of-two-variables

Example
Find the point (x, y, z) at which the following function is minimized.

flz,y) =z -8z +y* +6y—7
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Minimizing mean squared error

n

1
qu(wo,’wl) — . (yz- — (’wo + ’wlwz'))2
1=1

To find the w§ and w} that minimize R, (wo, wq ), we'll:

OR, :
Bw(? and set it equal to O.

ORs,
8w 1

1.Find
2.Find

and set it equal to O.

3. Solve the resulting system of equations.
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Answer at g.dsc40a.com
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Which of the following is equal to

. A= i (yi — (wo + wiz;))

R
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
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Strategy

We have a system of two equations and two unknowns (wg and w):
——Z — (wo + wyz;)) =0 ——Z — (wo + wiz;))x;

To proceed, we'll:

1. Solve for wq in the first equation.
The result becomes wg, because it's the "best intercept.”

2. Plug wy into the second equation and solve for w;.
The result becomes w’l" because it's the "best slope.”

=0
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Solving for wy

——Z wg—l—wlxz)) =0
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Solving for w3

—— Z (wo + wiz;))x; =0
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Least squares solutions

We've found that the values w and w7 that minimize R are:

where:

These formulas work, but let's re-write w7 to be a little more symmetric.

1
g=—D Y
n

1=1
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An equivalent formula for w7

Claim:
n
Z(yz - g)wz
. i=1
wl — n
Z(«’Ez — Z)x;
i=1
Proof:
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Least squares solutions

o The least squares solutions for the intercept wgy and slope w are:

1=1

e We say w; and wj are optimal parameters, and the resulting line is called the
regression line.

e The process of minimizing empirical risk to find optimal parameters is also called
"fitting to the data."

e To make predictions about the future, we use| H " () = wj + wiz|




Let's test these formulas out in code! Follow along here.

Minutes to School

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

140 -
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Home Departure Time (AM)
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec04/lec04-code.ipynb

Causality

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

140+
1304
120+
110+

100+ o

Minutes to School

Home Departure Time (AM)

Can we conclude that leaving later causes you to get to school quicker?
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What's next?

We now know how to find the optimal slope and intercept for linear hypothesis functions.
Next, we'll:

See how the formulas we just derived connect to the formulas for the slope and
intercept of the regression line we saw in DSC 10.
o They're the same, but we need to do a bit of work to prove that.

e Learn how to interpret the slope of the regression line.

e Discuss causality.

Learn how to build regression models with multiple inputs.
o To do this, we'll need linear algebra!
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