Lecture 4

Simple Linear Regression

DSC 40A, Summer 2024

Announcements

- Homework 1 is due tomorrow night.
 - Before working on it, watch the Walkthrough Videos on problem solving and using
 Overleaf.
 - Using the Overleaf template is required for Homework 2 (and only Homework 2).
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- Recap: Center and spread.
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Recap: Center and spread

The relationship between h^st and $R(h^st)$

ullet Recall, for a general loss function L and the constant model H(x)=h, empirical risk is of the form:

$$R(h) = rac{1}{n} \sum_{i=1}^n L(y_i,h)$$

- h^* , the value of h that minimizes empirical risk, represents the **center** of the dataset in some way.
- $R(h^*)$, the smallest possible value of empirical risk, represents the **spread** of the dataset in some way.
- The specific center and spread depend on the choice of loss function.

Examples

When using **squared loss**:

- $h^* = \text{Mean}(y_1, y_2, \dots, y_n)$.
- $ullet R_{
 m sq}(h^*) = {
 m Variance}(y_1, y_2, \ldots, y_n).$

$$R_{sq}(h) = \frac{1}{5} \left((72 - h)^2 + (90 - h)^2 + (61 - h)^2 + (85 - h)^2 + (92 - h)^2 \right)$$

$$\begin{array}{c} 700 \\ 600 \\ 500 \\ \hline \\ 300 \\ 200 \\ \end{array}$$

men squared loss unerse squared loss empirical vish (for squar

When using absolute loss:

- $h^* = \text{Median}(y_1, y_2, \dots, y_n).$
- $R_{\rm abs}(h^*) = {\rm MAD}$ from the median.

$$R_{abs}(h) = \frac{1}{5}(|72 - h| + |90 - h| + |61 - h| + |85 - h| + |92 - h|)$$

$$(85, 99)$$

$$15$$

$$60$$

$$70$$

$$80$$

$$90$$

$$100$$

on we middle tions of informations of the predictions

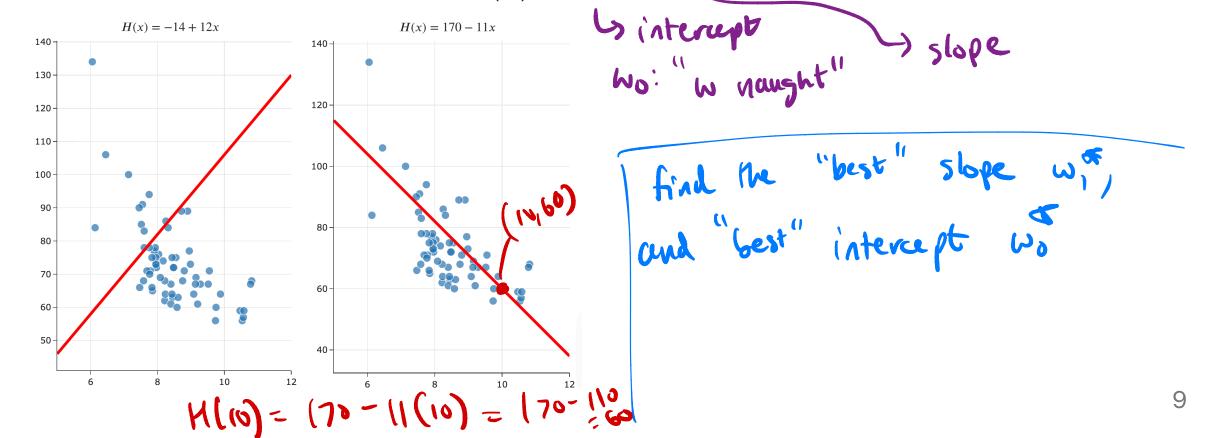
Simple linear regression

H(time in) > [redict norming) > Commute time. Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted y.

Parameters define the relationship between the input and output of a hypothesis function.

The simple linear regression model, $H(x)=w_0+w_1x$, has two parameters: w_0 and w_1 .



The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Roys
$$(H) = \frac{1}{n} \sum_{i=1}^{n} |y_i - H(x_i)|$$

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^{st}(x)$ that minimizes empirical risk:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Since linear hypothesis functions are of the form $H(x)=w_0+w_1x$, we can re-write $R_{
m sq}$ as a function of w_0 and w_1 :

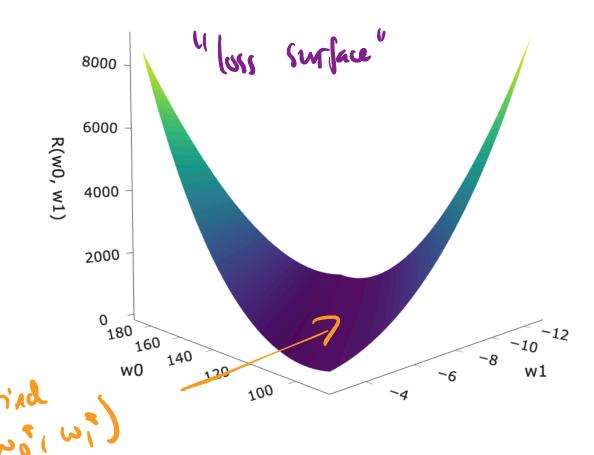
function of
$$w_0$$
 and w_1 :
$$R_{\mathrm{sq}}(w_0,w_1)=\frac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)\right)^2 \qquad \text{ore} \quad \omega_{\boldsymbol{\delta}_i} \; \omega_{\boldsymbol{\delta}_i}$$

ullet How do we find the parameters w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$?

Loss surface

For the constant model, the graph of $R_{
m sq}(h)$ looked like a parabola.

What does the graph of $R_{\rm sq}(w_0,w_1)$ look like for the simple linear regression model?



Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

ullet Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2.$$

- $R_{
 m sq}$ is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0.
 - Solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).

Example Find the point
$$(x,y,z)$$
 at which the following function is minimized.
$$f(x,y) = x^2 - 8x + y^2 + 6y - 7 = 2$$

$$\frac{\partial f}{\partial x} = 2x - 8 \implies 2x - 8 = 0 \implies 2x = 8 \implies x = 4$$

$$\frac{\partial f}{\partial x} = 2y + 6 \implies 2y = -6 \implies y = -3$$

$$\frac{\partial f}{\partial x} = 2y + 6 \implies 2y = -6 \implies y = -3$$

Completing the square $f(xy) = (x-y)^{2} - 16 + (y+3)^{2} - 9 - 7$ $= (x-y)^{2} + (y+3)^{2} - 32$ $= (x-y)^{2} + (y+3)^{2} - 32$ min. at (4,-3,-32)

Minimizing mean squared error

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

To find the w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$, we'll:

- 1. Find $\frac{\partial R_{\mathrm{sq}}}{\partial w_0}$ and set it equal to 0.
- 2. Find $\frac{\partial R_{\text{sq}}}{\partial w_1}$ and set it equal to 0.
- 3. Solve the resulting system of equations.

Question 🤔

Answer at q.dsc40a.com

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2.$$

Which of the following is equal to $\frac{\partial R_{\mathrm{sq}}}{\partial w_0}$?

• A.
$$\dfrac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)$$

• B.
$$-\frac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1x_i)\right)$$

$$ullet$$
 C. $-rac{2}{n}\sum_{i=1}^n \left(y_i-(w_0+w_1x_i)
ight)\!x_i$

• D.
$$-\frac{2}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1x_i)\right)$$

$$egin{aligned} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_0} &= \prod_{i=1}^n 2 \left(y_i - \left(v_0 + w_1 x_i
ight)
ight)(-1) \ &= -rac{2}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight) \end{aligned}$$

$$egin{aligned} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_1} &= rac{1}{N} \int_{\mathbb{T}^n}^{\infty} 2 \left(y_i - \left(w_0 + w_1 x_i
ight) \right) \left(- x_i
ight) \ &= - rac{2}{N} \int_{\mathbb{T}^n}^{\infty} \left[\left(y_i - \left(w_0 + w_1 x_i
ight) \right) \left(x_i
ight)
ight] \end{aligned}$$

Strategy

We have a system of two equations and two unknowns (w_0 and w_1):

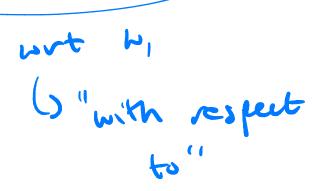
$$-\frac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)\right)x_i=0$$
 To proceed, we'll: Partial wat we

$$-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i}=0$$

1. Solve for w_0 in the first equation.

The result becomes w_0^* , because it's the "best intercept."

2. Plug w_0^* into the second equation and solve for w_1 . The result becomes w_1^* , because it's the "best slope."



Good: isolate Wo

Solving for w_0^st

$$\left(-rac{2}{n}\sum_{i=1}^n\left(y_i-\left(w_0+w_1x_i
ight)
ight)=0
ight)$$

$$\frac{1}{2} \left(\frac{1}{4!} - \left(\frac{1}{4!} - \left(\frac{1}{4!} + \frac{1}{4!} + \frac{1}{4!} \right) \right) = 0$$

$$\sum_{i=1}^{\infty} y_i - \sum_{i=1}^{\infty} w_0 - \sum_{i=1}^{\infty} w_i x_i = 0$$

$$\mathcal{E}(y_i) - n \cdot \omega_0 - \omega_1 \mathcal{E}_{i=1}(x_i) = 0$$

$$\sum_{i=1}^{N} y_i - \omega_i \hat{\mathcal{E}}_{Xi} = N \cdot W_0$$

$$w_0 = \frac{\sum_{i=1}^{N} y_i - w_i \sum_{i=1}^{N} x_i}{\sum_{i=1}^{N} y_i - \sum_{i=1}^{N} \sum_{i=1}^{N} x_i}$$

$$= \frac{\sum_{i=1}^{N} y_i - w_i \sum_{i=1}^{N} x_i}{\sum_{i=1}^{N} x_i}$$

Solving for
$$w_1^*$$

Une wo = y - w x

Solving for
$$w_1^*$$

$$\frac{2}{n} \sum_{i=1}^n (y_i - (w_0^n + w_1 x_i)) x_i = 0$$
Use $w_0^* = y$

$$\begin{cases}
\text{Good: isolate } w_1^* \\
\text{Solving for } w_1^* \\
\text{Good: isolate } w_1^*
\end{cases}$$

Solate
$$\omega_1$$

 $\mathcal{E}_{i=1}(y_i-y) \times i^2 = \omega_1^* \mathcal{E}_{i=1}(x_i-x) \times i$

$$\sum_{i=1}^{\infty} (y_i - (y_i - w_i \times x_i)) x_i = 0$$

$$\omega^* = \frac{\hat{S}}{\hat{S}} (y_i - \bar{y}) \times i$$

$$\hat{S} (x_i - \bar{x}) \times i$$

$$\hat{S} (x_i - \bar{x}) \times i$$

$$\frac{2}{2}(y_i - y + w_i x - w_i x_i))x_i = 0$$

$$\frac{2}{\sqrt{3}}\left(\frac{3}{\sqrt{3}}\right) \times \left(\frac{3}{\sqrt{3}}\right) \times \left(\frac{3}{\sqrt{3}$$

Least squares solutions

We've found that the values w_0^* and w_1^* that minimize $R_{
m sq}$ are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

where:

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i \qquad \qquad ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$

These formulas work, but let's re-write w_1^st to be a little more symmetric.

An equivalent formula for w_1^st

Big idea: $\frac{2}{(2)}(x;-x)=0$ Shown before, and in HV1 algebraically!

Claim:

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\text{Proof:} \quad \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} (x_{i} - \bar{y}) - \sum_{i=1}^{n} (x_{i} - \bar{y})^{2}$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y}) \times_{i} - \bar{x} \times_{i} (y_{i} - \bar{y})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y}) \times_{i} - \bar{x} \times_{i} (y_{i} - \bar{y})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y}) \times_{i} - \bar{x} \times_{i} (y_{i} - \bar{y})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y}) \times_{i} - \bar{x} \times_{i} (y_{i} - \bar{y})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y}) \times_{i} - \bar{x} \times_{i} (y_{i} - \bar{y})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y}) \times_{i} - \bar{x} \times_{i} (y_{i} - \bar{y})$$

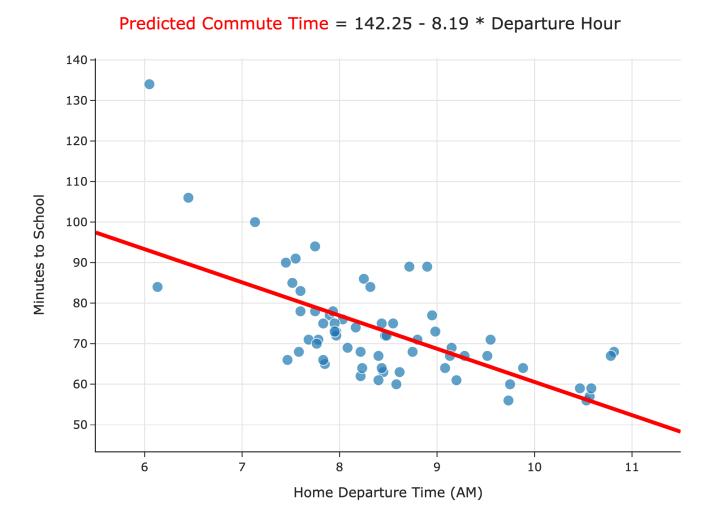
$$= \sum_{i=1}^{n} (y_{i} - \bar{y}) \times_{i} - \bar{x} \times_{i} (y_{i} - \bar{y})$$

• The **least squares solutions** for the intercept w_0 and slope w_1 are:

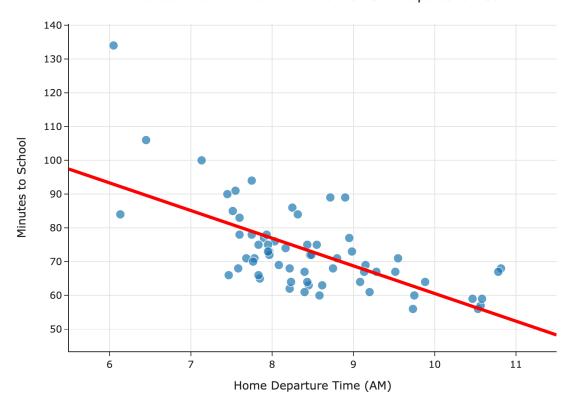
$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2}$$
 $w_0^* = ar{y} - w_1^* ar{x}$

- We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the Ly when we use squared loss regression line.
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- ullet To make predictions about the future, we use $|H^*(x)=w_0^*+w_1^*x|$

Let's test these formulas out in code! Follow along here.



Causality



Can we conclude that leaving later causes you to get to school quicker?

Noi. Just an donver pattern.

What's next?

We now know how to find the optimal slope and intercept for linear hypothesis functions. Next, we'll: $H(x) = \omega_0 + \omega_1 \times \omega_1 + \omega_2$

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Discuss causality.
- Learn how to build regression models with multiple inputs.
 - To do this, we'll need linear algebra!