Lecture 5

More Simple Linear Regression

DSC 40A, Summer 2024



Announcements

Homework 2 is due tomorrow. Remember that using the Overleaf template is
required for Homework 2 (and only Homework 2).

Groupwork 1 solutions are available on Ed. Homework 1 solutions coming this
afternoon.

Reminder to check out the FAQs page and the tutor-created supplemental resources
on the course website, if you'd like extra practice or review.

Please turn your camera on when working with tutors in virtual office hours.

Grace period for Groupwork 1: submit by 11:59p tonight, if you haven't yet.



Agenda

e Recap: Simple linear regression.

e Correlation.

Interpreting the formulas.

e Connections to related models.

Introduction to linear algebra.
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Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.
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Recap

e In Lecture 4, our goal was to fit a simple

Commuting Time vs. Home Departure Time

linear regression model,
H(x) = wy + wix, to our commute
times dataset.
o x;: The 1th home departure time
(e.g. 8.5, for 8:30 AM).

o 9;: The 1th actual commute time
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3 o H(x;): The ith predicted commute
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e To do so, we used squared loss.



The modeling recipe
v
1.Choose a model. i,\w
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2. Choose a loss function.

W Ls‘;( pIv ”("‘b ("M’ Hx 3>

Ny

3. Minimize average loss to find optimal model parameters.
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Least squares solutions

e Our goal was to find the parameters w and w1 * that minimized:

Rsq(wo, w1) = - i (i — (wo + wiz;))°

n 4

e To do so, we used calculus, and we found that the minimizing values are:
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o We say w; and w] are optimal parameters, and the resulting line is called the
regression line.



Minutes to School
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Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Home Departure Time (AM)



Now what? Oz wo* WX

We've found the optimal slope and intercept for linear hypothesis functions using squared

C——

loss (i.e. for the regression line). Now, we'll:

—_—

e See how the formulas we just derived connect to the formulas for the slope and
intercept of the regression line we saw in DSC 10.
o They're the same, but we need to do a bit of work to prove that.
e Learn how to interpret the slope of the regression line.

e Understand connections to other related models.

e Learn how to build regression models with multiple inputs.

o To do this, we'll need linear algebra! v
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Answer at g.dsc40a.com

Consider a dataset with just two points, (2, 5) and (4, 15). Suppose we want to fit a linear
hypothesis function to this dataset using square s. Whg¥are the values of w{") and w3

that minimize empirical risk?

e Awy=2,w] =35

O: ’w1:
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Quantifying patterns in scatter plots

e [In DSC 10, you were introduced to the
idea of the correlation coefficient, r.

e |t is a measure of the strength of the

linear association of two variables, ©

and y.

o [ntuitively, it measures how tightly
clustered a scatter plot is around a
straight line.

e |t ranges between -1and 1. \
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The correlation coefficient/
e The correlation coefficient, r, is defined as the average of the product of x and y,

when both are in standard units.

e Let o, be the standard deviation of the x;s, and & be the mean of the x;s.

Tr;—

o/1; in standard units is
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e The correlation coefficient, then, is:
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The correlation coefficient, visualized

[r=-o.121 }

[r= 0.052 }
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Another way to express w;

e It turns out that w7, the optimal slope for the linear hypothesis function when using
squared loss (i.e. the regression line) be written in terms of 7!
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e It's not surprising that r is related to w7, since 7 is a measure of linear association.

 Concise way of writing wy and wy:

16



Proof that w? = r—~
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Let's test these new formulas out in code! Follow along here.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour
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Minutes to School

Home Departure Time (AM)
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Interpreting the slope w L

e The units of the slope are units of y per units of x.

e In our commute times example, in H (x) = 142.25 — 8.19z«, our predicted commute
time decreases by 8.19 minutes per hour.
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Interpreting the slope
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e Since o, > 0and oy, > 0, the slope's signis 7's sign. vt ”Tw‘p.

- e

 Asthe y values get more spread out, o, increases, so the slope gets steeper.

o Asthe x values get more spread out, o, increases, so the slope gets shallower.
At o) |A mal) e 21
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Interpreting the intercept — ¢ O

Predicted Commute Time = 142.25 - 8.19 * Departure Hour
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What are the units of the intercept?
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Answer at g.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75
minutes to all commute times in our dataset. What happens to the resulting regression
line?

e A.Slope increases, intercept increases.

o B. Slope decreases, intercept increases.

@Iope stays the same, intercept increases.
e D.Slope stays the same, intercept stays the same.

o :




' h
Correlation and mean squared error vl cbvr l

e Claim: Suppose that wO and w7 are the optimal intercept ané('slope for the regression

line. Then, "2 Py (\‘od*" et condehion
Rsq(wp, wi) = 0'32/(1 - ) e lowrr e MSE

e Thatis, the mean squared error of the regression line's predictions and the correlation
coefficient, r, always satisfy the relationship above.

e For more, find the proof in our FAQs (link). But why do we care?

o |n machine learning, we often use both the mean squared error and r? to compare
the performances of different models.

o |f we can prove the above, we can show that finding models that minimize

mean squared error is equivalent to finding models that maximize re.
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Question
Answer at g.dsc40a.com

Suppose we chose the model H(x) = w« and squared loss.
What is the optimal model parameter, w3 ?
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Exercise pwmAaim L R T

Suppose we chose the model H( ) = w1 and squared loss
What is the optimal model parameter, w;?
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Minutes to School

Predicted Commute Time = 142.25 - 8.19 * Departure Hour
Predicted Commute Time = 8.41 * Departure Hour

Home Departure Time (AM)

28



Exercise

Suppose we choose the model H(a:) = wq and squared loss.
What is the optimal model parameter, wg?
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Comparing mean squared errors
e With both:

o the constant model, H(x) = h, and

o the simple linear regression model, H (x) = wy + w1 x,

when we chose squared loss, we minimized mean squared error to find optimal
parameters:

Ry(H) = — > (yi — H()))’

n <

e Which model minimizes mean squared error more?
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Comparing mean squared errors

Minutes to School

Predicted Commute Time = 142.25 - 8.19 * Departuie Hour
Predicted Commute Time =73.18
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MSE = — Zn: (yi — H(z:))*

n i3

e The MSE of the best

simple linear regression
model is =~ 97.

e The MSE of the best
constant model is =~ 167.

e The simple linear
regression model is a
more flexible version of

the constant model.
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Wait... why do we need linear algebra?

e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to find
hypothesis functions that:

o Use multiple features (input variables).

o Are non-linear,e.g. H(z) = wg + w1z + waz?.

e Before we dive in, let's review.
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Spans of vectors

e One of the most important ideas you'll need to remember from linear algebra is the
concept of the span of two or more vectors.

e To jump start our review of linear algebra, let's start by watching »& this video by
3bluelbrown.

/ p
/ /

/ pd
VAR RN

4///// The “span” of v and w is the

set of all their linear combinations.
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Let a and b vary
over all real numbers
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Next time

o We'll review the necessary linear algebra prerequisites.

o We'll then start to formulate the problem of minimizing mean squared error for the
simple linear regression model using matrices and vectors.

o We'll send some relevant linear algebra review videos on Ed.
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