Lecture 6

Dot Products and Projections

DSC 40A, Summer 2024

Announcements

- Homework 2 is due **tonight**. Remember that using the Overleaf template is required for Homework 2 (and only Homework 2).
- Check out the new FAQs page and the tutor-created supplemental resources on the course website.
 - \circ The proof that we were going to cover last class (that $R_{
 m sq}(w_0^*,w_1^*)=\sigma_v^2(1-r^2)$) is now in the FAQs page, under Week 3.

Agenda

- Why?
- Dot products.
- Spans and projections.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

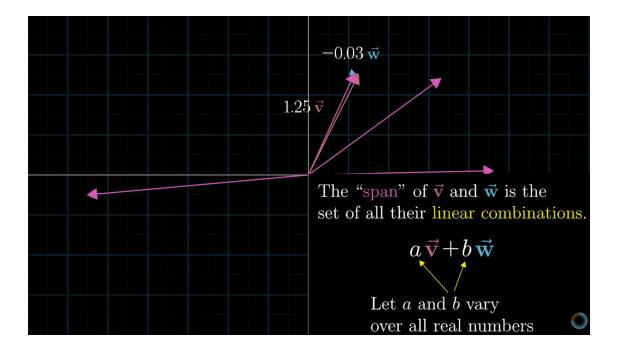
Dot products

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of matrices and vectors will allow us to find hypothesis functions that:
 - Use multiple features (input variables)
 - \circ Are non-linear in the features, e.g. $H(x)=w_0+w_1x_1+w_2x_2^2$.
- Before we dive in, let's review.

Spans of vectors

- One of the most important ideas you'll need to remember from linear algebra is the concept of the **span** of one or more vectors.
- To jump start our review of linear algebra, let's start by watching ## this video by 3blue1brown.



Warning **1**

- We're not going to cover every single detail from your linear algebra course.
- There will be facts that you're expected to remember that we won't explicitly say.
 - $\circ~$ For example, if A and B are two matrices, then AB
 eq BA.
 - This is the kind of fact that we will only mention explicitly if it's directly relevant to what we're studying.
 - But you still need to know it, and it may come up in homework questions.
- We will review the topics that you really need to know well.

PR: real numbers

There are in reals in our vector

- A vector in \mathbb{R}^n is an ordered collection of n numbers.
- We use lower-case letters with an arrow on top to represent vectors, and we usually write vectors as **columns**.

$$ec{m{v}} = egin{bmatrix} 8 \ 3 \ -2 \ 5 \end{bmatrix}$$

- Another way of writing the above vector is $\vec{v} = [8, 3, -2, 5]^\intercal$.
- Since $ec{v}$ has four **components**, we say $ec{v} \in \mathbb{R}^4$.

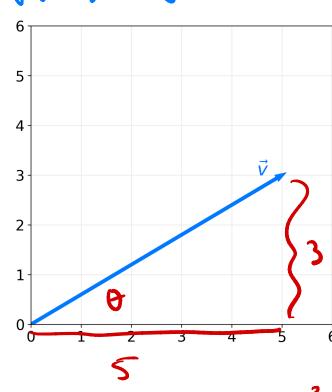
$$\vec{V} = \begin{bmatrix} \vec{3} \\ \vec{3} \end{bmatrix} \vec{y}$$

The geometric interpretation of a vector $\|\vec{v}\| = \sqrt{5^2+3^2} = \sqrt{34}$

- A vector $ec{v}=egin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is an arrow to the point (v_1,v_2,\ldots,v_n) from the origin.
 - ullet The **length**, or L_2 **norm**, of $ec{v}$ is:

$$||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$
 which residually fugurean (bearen - A vector is sometimes described as an object with a

 A vector is sometimes described as an object with a magnitude/length and direction.



$$\frac{?}{9}$$

$$\frac{?}{5}$$

$$\frac{?}{5}$$

$$\frac{?}{5}$$

$$\frac{?}{5}$$

$$\frac{?}{5}$$

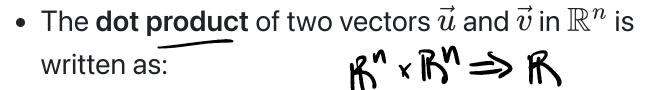
$$\frac{?}{5}$$

$$\frac{?}{5}$$

Dot product: coordinate definition

Some # elements!

Some dimension!



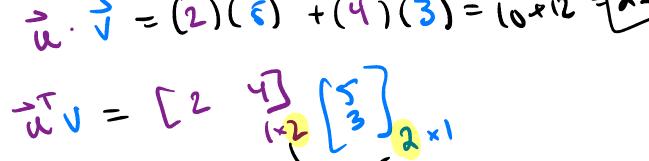
$$ec{u} \cdot ec{v} = ec{u}^{\scriptscriptstyle \intercal} ec{v}$$

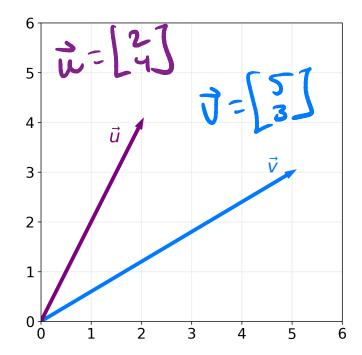
The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^n u_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The result is a **scalar**, i.e. a single number.

$$\frac{1}{4} \cdot \frac{1}{3} = (2)(\xi) + (4)(3) = (0x)^2 = (2)$$

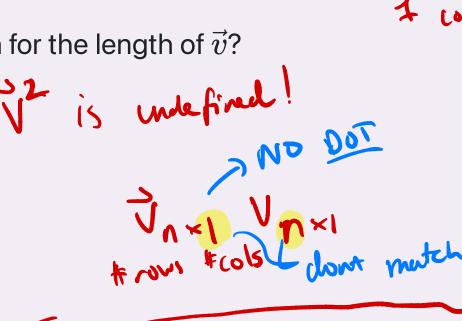




Answer at q.dsc40a.com

Which of these is another expression for the length of \vec{v} ?

- A. $\vec{v} \cdot \vec{v}$ B. $\sqrt{\vec{v}^2}$ C. $\sqrt{\vec{v} \cdot \vec{v}}$
 - E. More than one of the above.



→ 22=520 534 WID = 100 D= 2511

Dot product: geometric definition

• The computational definition of the dot product:

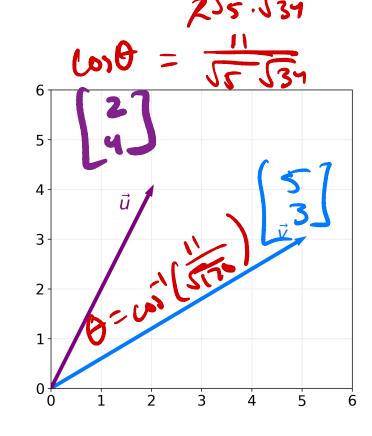
$$ec{u}\cdotec{v}=\sum_{i=1}^n u_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

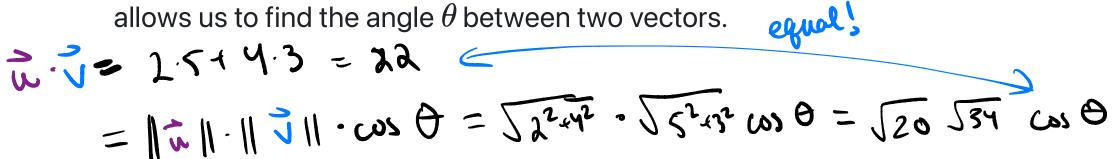
• The geometric definition of the dot product:

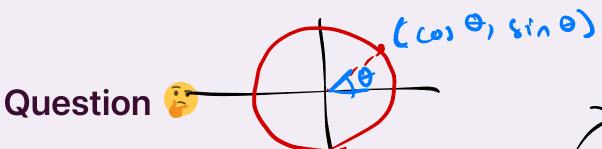
$$ec{u} \cdot ec{v} = \|ec{u}\| \|ec{v}\| \cos heta$$

where θ is the angle between \vec{u} and \vec{v} .

• The two definitions are equivalent! This equivalence allows us to find the angle θ between two vectors.







Answer at q.dsc40a.com

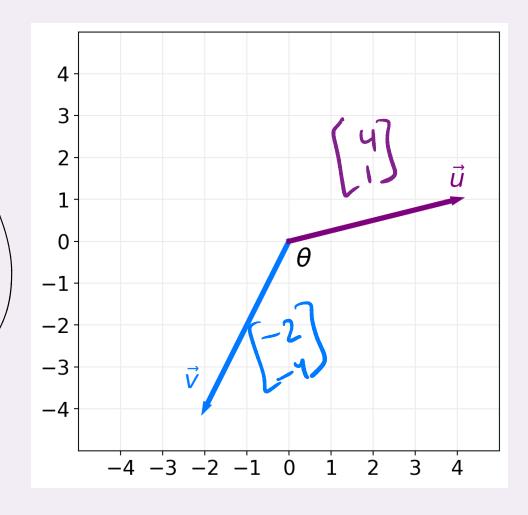
What is the value of θ in the plot to the right?

$$\frac{1}{2} \frac{1}{3} = \frac{1}{3$$

$$\frac{4000}{-12} = \sqrt{17} \cdot 255 \cos \theta$$

$$\Rightarrow \cos \theta = \frac{-126}{25557} = -\frac{6}{555}$$

$$\theta = \cos^{-1}\left(\frac{-6}{585}\right)$$



Perpudicular Orthogonal ve

Orthogonal vectors

• Recall: $\cos 90^{\circ} = 0$.

- "right angle"
 "perpendialer"

 orthogonal
- Since $\vec{u}\cdot\vec{v}=\|\vec{u}\|\|\vec{v}\|\cos\theta$, if the angle between two vectors is $90^{\rm o}$, their dot product is $\|\vec{u}\|\|\vec{v}\|\cos90^{\rm o}=0$.
- If the angle between two vectors is $90^{\rm o}$, we say they are perpendicular, or more generally, orthogonal.
- Key idea:

two vectors are
$$orthogonal \iff \vec{u}\cdot\vec{v}=0$$

$$\text{ So "if and only if"}$$
 bilinational statement

Exercise > unit be all 0

Find a non-zero vector in \mathbb{R}^3 orthogonal to:

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \mathcal{U} = \begin{bmatrix} -2 \\ 3 \end{bmatrix} = 2^{2x} \quad \vec{v} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \mathcal{U} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \mathcal{U} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \mathcal{U} = \begin{bmatrix} 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal{U} = \begin{bmatrix} -1 \\ 2 \\ 5 \\ -8 \end{bmatrix}$$

$$\mathcal$$

$$=0$$

$$\frac{1}{2}(-2) + 5(4) + (-6)(2)$$

$$= 2(-2) + 5(4) + (-6)(2)$$

$$= -1 + 20 - 16 = 0$$

Golutions to 24,+542-843=D

Spans and projections

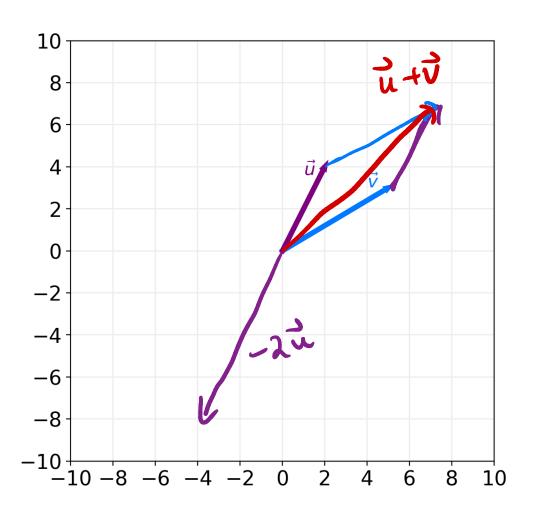
$$\vec{u} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \Rightarrow -\lambda \vec{u} = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$$

Adding and scaling vectors

• The sum of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is the element-wise sum of their components:

• If c is a scalar, then:

$$cec{v} = egin{bmatrix} cv_1 \ cv_2 \ dots \ cv_n \end{bmatrix}$$



Linear combinations

- Vi are vectors
- Let $\vec{v}_1, \vec{v}_2, ..., \vec{v}_d$ all be vectors in \mathbb{R}^n .
- A linear combination of $\vec{v}_1, \vec{v}_2, ..., \vec{v}_d$ is any vector of the form:

$$a_1\vec{v}_1+a_2\vec{v}_2+\ldots+a_d\vec{v}_d$$

where $a_1, a_2, ..., a_d$ are all scalars.

d vectors with or

$$V_{2} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad V_{2} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

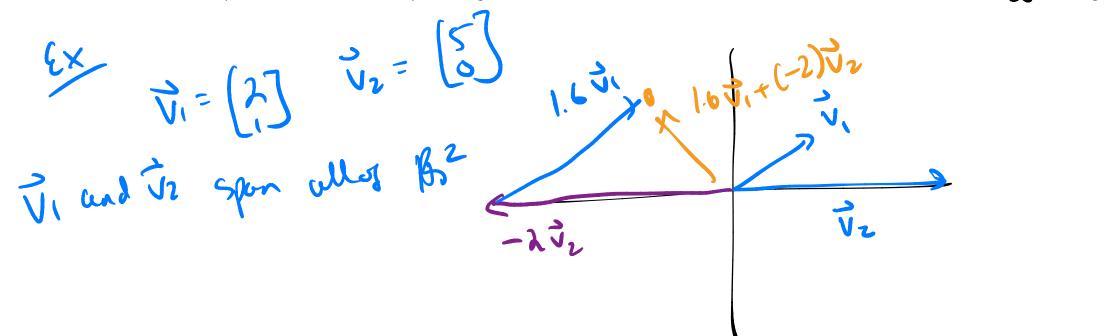
$$\vec{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \vec{v}_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix} \quad \vec{v}_3 = \begin{bmatrix} 0 \\ 9 \end{bmatrix}$$

$$2\vec{v}_1 + 1\vec{v}_2 + \frac{1}{4}\vec{v}_3 = \begin{bmatrix} - \\ - \end{bmatrix}$$
 a veetor in \mathbb{R}^2

Span

- Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d all be vectors in \mathbb{R}^n .
- The **span** of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

$$\operatorname{span}(ec{v}_1,ec{v}_2,\ldots,ec{v}_d)=\{a_1ec{v}_1+a_2ec{v}_2+\ldots+a_dec{v}_d:a_1,a_2,\ldots,a_d\in\mathbb{R}\}$$



If so, write \vec{y} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

To whoever teaches this in the future: the slides afterwards were improved in Lecture 7, so you may want to bring some of that material to this lecture.

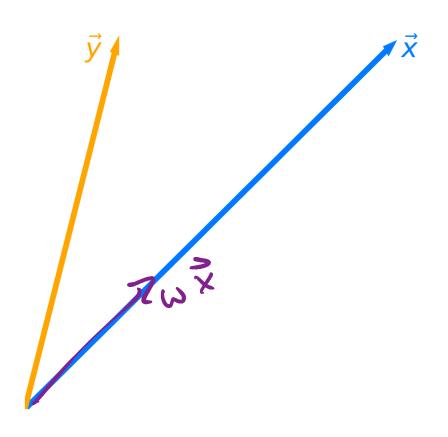
Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^n .
- The span of \vec{x} is the set of all vectors of the form:

 $w\vec{x}$

where $w \in \mathbb{R}$ is a scalar.

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\operatorname{span}(\vec{x})$ that is closest to \vec{y} is the projection of \vec{y} onto $\operatorname{span}(\vec{x})$.



いなくせこな

Projection error producted (approximately producted (approximately producted) and the projection

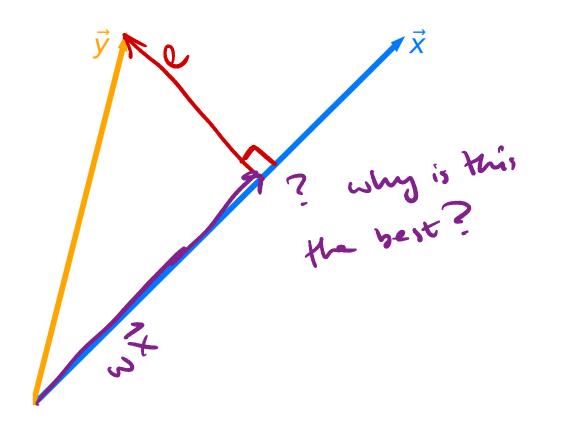
- Let $\vec{e} = \vec{y} w\vec{x}$ be the **projection** error: that is, the vector that connects \vec{y} to $\mathrm{span}(\vec{x})$.
- Goal: Find the w that makes \vec{e} as short as possible.
 - That is, minimize:

$$\| \vec{e} \|$$

Equivalently, minimize:

$$\| \vec{\pmb{y}} - w\vec{\pmb{x}} \|$$

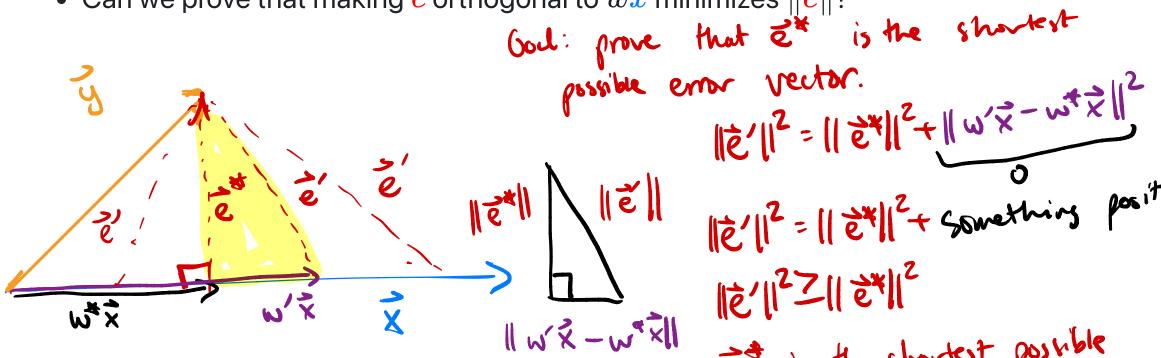
• Idea: To make \vec{e} has short as possible, it should be orthogonal to $w\vec{x}$.



Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Idea: To make \vec{e} as short as possible, it should be orthogonal to $w\vec{x}$.

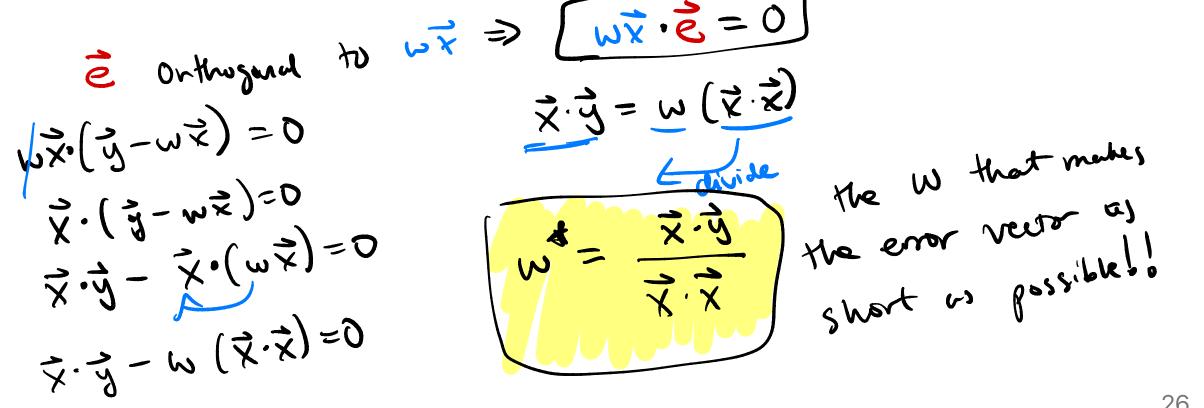
• Can we prove that making \vec{e} orthogonal to $w\vec{x}$ minimizes $||\vec{e}||$?



Te'112 = 11 ex 112+ Something positive ever vector

Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|$, \vec{e} must be orthogonal to $w\vec{x}$.
- Given this fact, how can we solve for w?



Orthogonal projection

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- **Answer**: It is the vector $w^*\vec{x}$, where:

$$w^* = rac{ec{x} \cdot ec{y}}{ec{x} \cdot ec{x}}$$

• Note that w^* is the solution to a minimization problem, specifically, this one:

$$\operatorname{error}(w) = \|ec{e}\| = \|ec{y} - wec{x}\|$$

• We call $w^*\vec{x}$ the orthogonal projection of \vec{y} onto $\mathrm{span}(\vec{x})$.

 \circ Think of $w^*\vec{x}$ as the "shadow" of \vec{y} .

Exercise

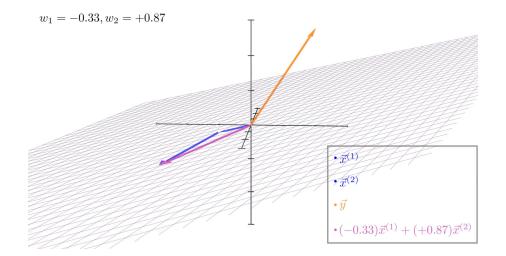
Let
$$ec{a} = egin{bmatrix} 5 \\ 2 \end{bmatrix}$$
 and $ec{b} = egin{bmatrix} -1 \\ 9 \end{bmatrix}$.

What is the orthogonal projection of \vec{a} onto $\mathrm{span}(\vec{b})$?

Your answer should be of the form $w^*\vec{b}$, where w^* is a scalar.

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ Vectors in $\mathrm{span}(ec x^{(1)},ec x^{(2)})$ are of the form $w_1ec x^{(1)}+w_2ec x^{(2)}$, where $w_1,w_2\in\mathbb{R}$ are scalars.
- Before trying to answer, let's watch ## this animation that Jack, one of our tutors,
 made.



Minimizing projection error in multiple dimensions

- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ That is, what vector minimizes $||\vec{e}||$, where:

$$ec{e} = ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}$$

- Answer: It's the vector such that $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$ is orthogonal to \vec{e} .
- Issue: Solving for w_1 and w_2 in the following equation is difficult:

$$\left(w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)}\right)}_{ec{e}} = 0$$

What's next?

• It's hard for us to solve for w_1 and w_2 in:

$$\left(w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)}\right)}_{\vec{e}} = 0$$

- Solution: Combine $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ into a single matrix, X, and express $w_1\vec{x}^{(1)}+w_2\vec{x}^{(2)}$ as a matrix-vector multiplication, $X\vec{w}$.
- Next time: Formulate linear regression in terms of matrices and vectors!