Lecture 8

Regression and Linear Algebra

DSC 40A, Summer 2024



Announcements

e Homework 3 is due tomorrow.




Agenda

e Overview: Spans and projections.
e Regression and linear algebra.

o Multiple linear regression.



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.
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Projecting onto the span of a single vector

 Question: What vector in span(z) is
closest to 1/?

e The answer is the vector wz, where the
w is chosen to minimize the length of
the error vector:

lefl = [ — wz|

o Key idea: To minimize the length of the
error vector, choose w so that the error
vector is orthogonal to .

X\



Projecting onto the span of a single vector

 Question: What vector in span(z) is
closest to 1/?

e Answer: It is the vector w*, where:

w* = v

T

XL



Projecting onto the span of multiple vectors

e Question: What vector in

—

span(z!), (?)) is closest to 1/?

A
e The answer is the vector P
w17 + wyZ?), where wy and wo are == g‘ =

chosen to minimize the length of the

error vector;

lell = 17 — w12 —wyz®)|

o Key idea: To minimize the length of the

if (1) and 72 are linearly
error vector, choose wi and w9 so that

the error vector is orthogonal to both

—

71 and 7(2).

independent, they span a plane.



Matrix-vector products create linear combinations of columns!

e Question: What vector in span(z(!), Z(?)) is closest to /?

« To help, we can create a matrix, X, by stacking 71 and 7(?) next to each other:

I R I A
X = [7z1) 2@ 5 0
R N
e Then, instead of writing vectors in span(z ), )
Xw 0

o Key idea: Find w such that the error vector, € =

column of X.

, We can say:

— X, is orthogonal to every



Constructing an orthogonal error vector

o Key idea: Find W € R such that the error vector, ¢ = 17 — X, is orthogonal to the
columns of X.

o Why? Because this will make the error vector as short as possible.
e The w™* that accomplishes this satisfies:
XTe=0
o Why? Because X ' € contains the dot products of each column in X with €. If
these are all 0, then € is orthogonal to every column of X!

— (1)1 —(1)T =
XTe = _aj()_é’: i) e '\)wﬂ\" st
E 55(2>T__ _55(2)1’5_ YNM
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The normal equations

o Key idea: Find W € R such that the error vector, ¢ = 17 — X, is orthogonal to the
columns of X.

« The w* that accomplishes this satisfies: ¢ Assuming X X Is invertiple, Yhis is the

xTz - vector:
X7 () - Xa5") = W = (X7 x) KT
X1y — XTX0* =

o This is a big assumption, because it
: T Nurbole
requires X~ X tob
e The last statement is referred to as the o If XT X is not full rank then there

normal equations. are infinitely many solutions to the

normal equations,

X Xw* = X14,. »



What does it mean?
» Original question: What vector in span(zZ ("), 2(?)) is closest to /?

Final answer: Assuming X © X is invertible, it is the vector Xw*, where:

’lTJ* _ (XTX)—lXT

e Revisiting our example:

| | ] 2 -1
X=1z0 z@] =15 0
A N I B I S

0.7289
Using a computer gives us w* = (X1 X) 71 X1 ~ [ ] .

1.6300

e So, the vector in span(z(!), Z(?)) closest to 1/is 0.7289% (") 4 1.6300% %),
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An optimization problem, solved
o We just used linear algebra to solve an optimization problem.
o Specifically, the function we minimized is:
error(w) = ||y — Xw||
o This is a function whose input is a vector, w, and whose output is a scalar!

e The input, w*, to error(w) that minimizes it is one that satisfies the normal
equations:

X xor = x*
If X T X is invertible, then the unique solution is:
’ZTJ* _ (XTX)—lXT

o We're going to use this frequently!
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Wait... why do we need linear algebra?

e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to find
hypothesis functions that:

o Use multiple features (input variables).

o Are non-linear in the features, e.g. H(z) = wg + w1z + waz?.

e Let's see if we can put what we've just learned to use.
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: : : . . | Ly
Simple linear regression, revisited V\kwe

sls gz
Model: H(x) —J’L’Lli&—I—iﬂc
Loss function: u(yz H(z;))2.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

140+

e To find wy and w7, we minimized empirical

120+

o - risk, i.e. average loss:

' L ¢ 2

Ryg(H) = — > (yi — H(zy))
i=1

Observation: Ry, (wo, w1 ) kind of looks

; ; ; ; like the formula for the norm of a vector,
Home Departure Time (AM)
HUH — U% T U% +J721



Regression and linear algebra A o (n ey otz ek

Let's define a few new terms: /7
e The observation vector is the vector . This is the vector of observed "actual
values".

« The hypothesis vector is the vector i € R™ with components H(x;).Thisis the
vector of predicted values.

« The error vector is the vector e € R™ with components: A\
€;, — — H(CBZ) Z - —_— l/\
N S‘l WA

= =\ A
- (7,7, WY
h = |

y\ﬁ(\

QN\:AU.\ 17
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Example /{"A— Qphmal = Y T r;—_\

Consider H(z) = 2+ . — h=|2+1- 9 |- 4

6 3 ‘-l*li'g“ Liz'
~ P J

4 \ O E=1y—h= 2-M = °)"

; s8] L3

2 w‘ e

X Ra(H) = =3 ()~ H(z))’

% 1 2 3 a2 5 6 %5 {C)) + (_ZD —\-(‘\‘X’\g

@36\,@0 =% \ el” 18






Regression and linear algebra

Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values”.

« The hypothesis vector is the vector i € R™ with components H(x;).Thisis the

ector of predicted values. .
Y predi valu e b
« The error vector is the vector e € R™ with components: “ T Lans'h
e; =1, — H(x;) A

e Key idea: We can rewrite the mean squared error of H as:

Ra(H) = =3 (1. H@))* = ~ ¢l = - bl

n —1 n
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The hypothesis vector

« The hypothesis vector is the vector h € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H(x) = wy + wix, the hypothesis vector can be

written:
_— - [ akenat®
o
’ . wo |+ |w
\‘((YC,\"’ L\)}fw\ )(g, 7 0 | 1?;'2 _ 1 X:'L [V‘\ ]ax‘
: ’L Xn CRKSW"
\Wo/+ WITn | «\ L XA

§4 .



Rewriting the mean squared error M ()= We W1 X

o Define the design matrix X € R"*? as: |,
B — Wo 1’

1 L1
1 L9

1 =z,

o Define the parameter vector w € R? to be w = [

e Then, h = Xw, so the mean squared error becomes:

1 — R S
Rua(H) = [ = | = |Rua(®) = — |1 — X&
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Minimizing mean squared error, again

e To find the optimal model parameters for simple linear regression, "w(’; and wi, we

reviously minimized: -
P y “ CY\)
1 & ' T

qu(wOawl) — Z( — (wO + wlmi))z

n 1=1

e Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find w(, and w} by finding the w* = |wy 'w’l"]T that minimizes:

S 1 S
Rua(®) = — |7 — X

« Do we already know the w* that minimizes R (10)?



An optimization problem we've seen before

e The optimal parameter vector, w* = [wz‘) w’{]T, is the one that minimizes:

S 1 S
T Rug(@) = — i — X

e Previously, we found that w* =

vector, |le|| = ||y — Xw||

e Ry (w)is closely related to

p\s%(asc ‘ﬁ l\%

e The minimizer of ||€|| is the same as the minimizer of Ry, (w)

w3
|

0y o yekor e

(X1 X)~1 X" minimizes the length of the error
Mo AoV @(‘oavd' TS ot o Yf“"‘ jl: X\.’%S

€lf WMinioni Ziny ll%v?(ﬁ(\ b i

Com. &) V\ml\\ V“\\'Z't"a

[

e Keyidea: w* = (X' X) 1 X7 also minimizes R, (1)’
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The optimal parameter vector, w*

e To find the optimal model parameters for simple linear regression, "w(’; and wi, we

previously minimized Rsq(wo, w1) = = Y i (v — (wo + wiz;))%

o We found, using calculus, that:

N [ A B

" lwg =§ —wiZ \pesv ,‘,\J(c../wf‘/’

e Another way of finding optimal model parameters for simple linear regression is to find

the W* that minimizes Ryq (W) = = ||y — Xw||%

o The minimizer, if X7 X is invertible, is the vector |w* = (X X))t X’

e These formulas are equivalent!



Roadmap

e To give us a break from math, we'll switch to a notebook, linked here, showing that
both formulas - that is, (1) the formulas for wj and wg we found using calculus, and
(2) the formula for w* we found using linear algebra — give the same results.

e Then, we'll use our new linear algebraic formulation of regression to incorporate
multiple features in our prediction process.
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H ()= Wwet wy Xi
Summary: Regression and linear algebra

o Define the design matrix X ¢ R"*?, observation vector , and parameter
vector w0 € R? as: 2
1z
1 L9 r
. Wy /
X B : : w B [ ] ﬁ
S w1
1 z,

e How do we make the hypothesis vector, h = Xw, as close to 7/ as possible? Use the
parameter vector w™: \ed Q#.uadons

’IB* _ (XTX)_lXT

e We chose w* so tha@ = Xw™ is the projection of 1 onto the span of the
columns of the design matrix, .X.

26
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departure_hour day_of month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.

28



Incorporating multiple features

e |n the context of the commute times dataset, the simple linear regression model we fit
was of the form: T apt

pred. commute = H(departure hour)
= wo + w; - departure hour

e Now, we'll try and fit a multiple linear regression model of the form:

pred. commute = H(departure hour} ) J,a»a o mew}
= wp + wq - departure hour + wy - day of month

l \'mf)v*'s

e Linear regression with multiple features is called multiple linear regression.

e How do we find wy, w3, and w5?
L )

| OW ‘
\Ni\’\l\ e Noawel Q'bwh >
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Geometric interpretation

e The hypothesis function:

H (departure hour) = wy + w; - departure hour

looks like a line in 2D.
e Questions:

o How many dimensions do we need to graph the hypothesis function:

H (departure houﬂdﬂl‘r&uo -+ w1 departure hour + wy - day of month
o What is the shape of the hypothesis function?

Z= 0t lhx + G

WES—— Wi

30



Commute Time vs. Departure Hour and Day of Month

120

100

awi] 2INWWOoD

Our new hypothesis function is a plane in 3D!

Our goal is to find the plane of best fit that pierces through this cloud of points. 31



The setup

e Suppose we have the following dataset.

e We can represent each day with a feature vector, Z:

-_
Ky =

€4
12

row

departure_hour day of month /'minutes

=

1 X\ 8.45 22 63.0

2 *, 890 28 89.0
-

3 xg 872 18 | 89.0
= | %A ? _
X~ 3

32



A\ >
| = jé >
The hypothesis vector V”""'
e When our hypothesis fu/rigg)n is of the form:\-)

H (departure hour} = wg + w; - departure hour + w- - day of month

the hypothesis vector h € R™ can be written as:

" H(departure hour,,day;) 1 departure hour; day; | -
H (departure hour,, day,)

ﬁ — _ Ldeparture hour2 dayQF’ _) o,
| H(departure hour,, day,)_ | 1 departure hour,, day,, | &]\;-‘




Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R7x3
and observation vector

1 departure hour; day, |
1 departure hour, day,

1 departure hour, day,

e Then, all we need to do is solve the normal equations:
X xw* = x*t
If X1 X is invertible, we know the solution is:

,lz‘]* _ (XTX)_lXT



Roadmap

e To wrap up today's lecture, we'll find the optimal parameter vector w* for our new
two-feature model in code. We'll switch back to our notebook, linked here.

e On Monday, we'll present a more general framing of the multiple linear regression
model, that uses d features instead of just two.

o We'll also look at how we can engineer new features using existing features.

o e.g. How can we fit a hypothesis function of the form
H(z) = wo + w1z + waz??
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