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Homework 4 is due on Tuesday.

Office hours schedule is different this week, due to the midterm exam.
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https://dsc40a.com/calendar


The Midterm Exam is on Thursday, August 22nd in class.

80 minutes, on paper, no calculators or electronics.

You are allowed to bring one two-sided index card (4 inches by 6 inches) of
notes that you write by hand (no iPad).

Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-3.

Prepare by practicing with old exam problems at practice.dsc40a.com.
Problems are sorted by topic!
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https://practice.dsc40a.com/


Multiple linear regression.

Interpreting parameters.

Feature engineering and transformations.
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Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!
If the direct link doesn't work, click the "  Lecture Questions"

link in the top right corner of dsc40a.com.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/


Multiple linear regression
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So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.

7



In the context of the commute times dataset, the simple linear regression model we fit
was of the form:

Now, we'll try and fit a multiple linear regression model of the form:

Linear regression with multiple features is called multiple linear regression.

How do we find , , and ?
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The hypothesis function:

looks like a line in 2D.

Questions:

How many dimensions do we need to graph the hypothesis function:

What is the shape of the hypothesis function?
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Our new hypothesis function is a plane in 3D!

Our goal is to find the plane of best fit that pierces through the cloud of points. 10



Suppose we have the following dataset.

We can represent each day with a feature vector, :
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When our hypothesis function is of the form:

the hypothesis vector  can be written as:
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To find the optimal parameter vector, , we can use the design matrix
and observation vector :

Then, all we need to do is solve the normal equations:

If  is invertible, we know the solution is:
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We will need to keep track of multiple features for every individual in our dataset.

In practice, we could have hundreds or thousands of features!

As before, subscripts distinguish between individuals in our dataset. We have 
individuals, also called training examples.

Superscripts distinguish between features. We have  features.

Think of , , ... as new variable names, like new letters.
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The augmented feature vector  is the vector obtained by adding a 1 to the
front of feature vector :

Then, our hypothesis function is:
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We have  data points, ,
where each  is a feature vector of  features:

We want to find a good linear hypothesis function:
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Define the design matrix  and observation vector :

Then, solve the normal equations to find the optimal parameter vector, :
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With  features,  has  entries.

 is the bias, also known as the intercept.

 each give the weight, or coefficient, or slope, of a feature.
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Interpreting parameters
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For each of 27 stores, we have:
net sales,

square feet,

inventory,

advertising expenditure,

district size, and

number of competing stores.

Goal: Predict net sales given the other five features.

To begin, we'll start trying to fit the hypothesis function to predict sales:
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Answer at q.dsc40a.com

What will be the signs of  and ?

A. 

B. 

A. 

A. 

Let's find out! Follow along in this notebook.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec09/lec09-code.ipynb


Answer at q.dsc40a.com

Which feature is most "important"?

A. square feet: 

B. competitors: 

C. inventory: 

D. advertising: 

E. district size: 
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform


The most important feature is not necessarily the feature with largest magnitude
weight.

Features are measured in different units, i.e. different scales.
Suppose I fit one hypothesis function, , with price in US dollars, and another

hypothesis function, , with price in Japanese yen (1 USD  146 yen).

Price is just as important in both hypothesis functions.

But the weight of price in  will be 146 times larger than the weight of price in

.

Solution: If you care about the interpretability of the resulting weights, standardize
each feature before performing regression, i.e. convert each feature to standard units.
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Recall: to convert a feature  to standard units, we use the formula:

Example: 1, 7, 7, 9.

Mean: .

Standard deviation:

Standardized data:
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The result of standardizing each feature (separately!) is that the units of each feature
are on the same scale.

There's no need to standardize the outcome (net sales), since it's not being
compared to anything.

Also, we can't standardize the column of all 1s.

Then, solve the normal equations. The resulting  are called the

standardized regression coefficients.

Standardized regression coefficients can be directly compared to one another.

Note that standardizing each feature does not change the MSE of the resulting
hypothesis function!
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Once again, let's try it out! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec09/lec09-code.ipynb


Feature engineering and transformations
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Question: Would a linear hypothesis function work well on this dataset?
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It looks like there's some sort of quadratic relationship between horsepower and MPG
in the last scatter plot. We want to try and fit a hypothesis function of the form:

Note that while this is quadratic in horsepower, it is linear in the parameters!

That is, it is a linear combination of features.

We can do that, by choosing our two "features" to be  and , respectively.

In other words,  and .

More generally, we can create new features out of existing features.
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Desired hypothesis function: .

The resulting design matrix looks like:

To find the optimal parameter vector , we need to solve the normal equations!
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What if we want to use a hypothesis function of the form:
?

What if we want to use a hypothesis function of the form:

?
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The process of creating new features out of existing information in our dataset is
called feature engineering.

In this class, feature engineering will mostly be restricted to creating non-linear
functions of existing features (as in the previous example).

In the future you'll learn how to do other things, like encode categorical information.

You'll be exposed to this in Homework 4, Problem 5!
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Recall our earlier example of predicting sales from square footage and number of
competitors. What if we want a hypothesis function of the form:

The solution is to choose a design matrix accordingly:
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As long as the form of the hypothesis function permits us to write  for some

 and , the mean squared error is:

Regardless of the values of  and , the value of  that minimizes  is the
solution to the normal equations:
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We can fit rules like:

This includes arbitrary polynomials.

These are all linear combinations of (just) features.

We can't fit rules like:

These are not linear combinations of just features!

We can have any number of parameters, as long as our hypothesis function is linear in
the parameters, or linear when we think of it as a function of the parameters.
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How do we know what form our hypothesis function should take?

Sometimes, we know from theory, using knowledge about what the variables

represent and how they should be related.

Other times, we make a guess based on the data.

Generally, start with simpler functions first.

Remember, the goal is to find a hypothesis function that will generalize well to
unseen data.
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Amdahl's Law relates the runtime of a program on  processors to the time to do the
sequential and nonsequential parts on one processor.

Collect data by timing a program with varying numbers of processors:

Processors Time (Hours)

1 8

2 4

4 3
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Processors Time (Hours)

1 8

2 4

4 3
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Suppose we want to fit the hypothesis function:

This is not linear in terms of  and , so our results for linear regression don't apply.

Possible solution: Try to apply a transformation.
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Question: Can we re-write  as a hypothesis function that is linear in
the parameters?
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Solution: Create a new hypothesis function, , with parameters  and , where
.

This hypothesis function is related to  by the relationship .

 is related to  by  and .

Our new observation vector, , is .

 is linear in its parameters,  and .

Use the solution to the normal equations to find , and the relationship between 

and  to find . 41



Once again, let's try it out! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec09/lec09-code.ipynb


Sometimes, it's just not possible to transform a hypothesis function to be linear in
terms of some parameters.

In those cases, you'd have to resort to other methods of finding the optimal
parameters.

For example, can't be transformed to be linear.

But, there are other methods of minimizing mean squared error:

One method: gradient descent, the topic of the next lecture!

Hypothesis functions that are linear in the parameters are much easier to work with.
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This is the end of the content that's in scope for the Midterm Exam.

Tomorrow and Wednesday, we'll introduce gradient descent, a technique for

minimizing functions that can't be minimized directly using calculus or linear algebra.

After the Midterm Exam, we'll switch gears to probability.
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