Lecture 9

Multiple Linear Regression

DSC 40A, Summer 2024



Announcements

e Homework 4 is due on Tuesday.

e Office hours schedule is different this week, due to the midterm exam.


https://dsc40a.com/calendar

The Midterm Exam is on Thursday, August 22nd!

e The Midterm Exam is on Thursday, August 22nd in class.

e 80 minutes, on paper, no calculators or electronics.
o You are allowed to bring one two-sided index card (4 inches by 6 inches) of
notes that you write by hand (no iPad).

e Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-3.

e Prepare by practicing with old exam problems at practice.dsc40a.com.
o Problems are sorted by topic!


https://practice.dsc40a.com/

Agenda

o Multiple linear regression.
o |nterpreting parameters.

e Feature engineering and transformations.



DK

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/




departure_hour day of month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.



Incorporating multiple features

In the context of the commute times dataset, the simple linear regression model we fit
was of the form:

pred. commute = H(departure hour)
= wo + w; - departure hour

Now, we'll try and fit a multiple linear regression model of the form:

pred. commute = H(departure hour)
= wp + wq - departure hour + wy - day of month

e Linear regression with multiple features is called multiple linear regression.

e How do we find wy, w7, and w5?



Geometric interpretation

e The hypothesis function:

H (departure hour) = wy + w; - departure hour
looks like a line in 2D.
e Questions:

o How many dimensions do we need to graph the hypothesis function:

H (departure hour) = wg + w; - departure hour + ws - day of month

o What is the shape of the hypothesis function?



Commute Time vs. Departure Hour and Day of Month
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Our new hypothesis function is a plane in 3D!

Our goal is to find the plane of best fit that pierces through the cloud of points. 10



The setup
e Suppose we have the following dataset.

departure_hour day of month minutes

row
1 8.45 22 63.0
2 8.90 28 89.0
3 8.72 18 89.0

e We can represent each day with a feature vector, Z:



The hypothesis vector

e When our hypothesis function is of the form:

H (departure hour) = wg + w; - departure hour + w- - day of month

the hypothesis vector h € R™ can be written as:

" H(departure hour,,day;) 1 departure hour; day;]| . _
H (departure hour,, day,) 1 departure hour, day,

>
|
|
S
—t

H (departure hour,,,day,, ) 1 departure hour,, day,,




Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R7x3
and observation vector

1 departure hour; day, |
1 departure hour, day,

1 departure hour, day,

e Then, all we need to do is solve the normal equations:
X xw* = x?t
If X1 X is invertible, we know the solution is:

,lz‘]* _ (XTX)_lXT



Notation for multiple linear regression
o We will need to keep track of multiple features for every individual in our dataset.
o |In practice, we could have hundreds or thousands of features!

o As before, subscripts distinguish between individuals in our dataset. We have n
individuals, also called training examples.

o Superscripts distinguish between features. We have d features.

departure hour: 7
day of month: z(?)

Think of az(l), :13(2), ...as new variable names, like new letters.
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Augmented feature vectors

« The augmented feature vector Aug(z) is the vector obtained by adding a 1 to the
front of feature vector z:

o 1 ]
(1) ) Wo
£ w1
- (2) 2
i= | Aug(?) = [P @ = |we
(d)
L () Wy |

e Then, our hypothesis function is:

H(Z) = wp + ’w1$(1) + w2$(2) — wdac(d)
= w - Aug(7)



The general problem

e We have n data points, (51, ), (552, ), e

where each z; is a feature vector of d features:

"
o

o

o \We want to find a good linear hypothesis function:

H(

—

L

) = wo 4+ wiz'Y + wez® + ...+ wez'?

— @ - Aug(%)
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The general solution

o Define the design matrix X € R™*(?*1) and observation vector

1 wgl) 5852) e :p(ld) "Aug(z7)T] - -
1 513;1) :1352) . ac(2d) Aug(z)?
X = _ _
1 2 2P gl Aug(z,)"_ | Yn

e Then, solve the normal equations to find the optimal parameter vector, w*:

X' xw*=Xx"



Terminology for parameters

e With d features, w has d + 1 entries.
e wy is the bias, also known as the intercept.

e wi,Ws,...,wWqeach give the weight, or coefficient, or slope, of a feature.

H(Z) = wo + wizW +wyzr® £ wgz?
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Example: Predicting sales

e For each of 27/ stores, we have:
o net sales,
o square feet,
o inventory,
o advertising expenditure,
o district size, and
o humber of competing stores.

o Goal: Predict net sales given the other five features.

o To begin, we'll start trying to fit the hypothesis function to predict sales:

H (square feet, competitors) = wg + wy - square feet + ws - competitors

20



DK

Question =

Answer at g.dsc40a.com

H (square feet, competitors) = wg + ws - square feet + ws - competitors

What will be the signs of w] and w5?

e A w] + w5+

e B.w] + (T
e Awi — wy+
e Aw] — Wy —

Let's find out! Follow along in this notebook.

21


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec09/lec09-code.ipynb

DK

Question =

Answer at g.dsc40a.com

Which feature is most "important"?

e A.square feet: w] = 16.202
e B.competitors: ws = —5.311
e C.inventory: wz = 0.175

e D.advertising: w, = 11.526
E. district size: w; = 13.580


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Which features are most "important"?

e The most important feature is not necessarily the feature with largest magnitude
weight.

e Features are measured in different units, i.e. different scales.
o Suppose | fit one hypothesis function, H1, with price in US dollars, and another
hypothesis function, Ho, with price in Japanese yen (1 USD = 146 yen).

o Price is just as important in both hypothesis functions.

o But the weight of price in H7 will be 146 times larger than the weight of price in
Ho,.

o Solution: If you care about the interpretability of the resulting weights, standardize

each feature before performing regression, i.e. convert each feature to standard units.

23



Standard units

e Recall: to convert a feature 1, o, ..., x, to standard units, we use the formula:

e Example:1,7,7, 9.

LE7T4749 _ 24 _ g
4 — 7 — v

o Standard deviation:

o Mean:

SD:\/l((1—6)2+(7—6)2+(7—6)2+(9—6)2):

4
o Standardized data:

1 — _
1|—>—6:—E 7»—>u:l 7
3 3 3 3

. 36 =3
1 —
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Standard units for multiple linear regression

e The result of standardizing each feature (separately!) is that the units of each feature
are on the same scale.

o There's no need to standardize the outcome (net sales), since it's not being
compared to anything.

o Also, we can't standardize the column of all 1s.

 Then, solve the normal equations. The resulting wy, wi, . . . , w}; are called the
standardized regression coefficients.

e Standardized regression coefficients can be directly compared to one another.

o Note that standardizing each feature does not change the MSE of the resulting
hypothesis function!

25



Once again, let's try it out! Follow along in this notebook.

26


http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec09/lec09-code.ipynb

ransformations
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MPG vs. Horsepower
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Question: Would a linear hypothesis function work well on this dataset?
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A quadratic hypothesis function

o |t looks like there's some sort of quadratic relationship between horsepower and MPG
in the last scatter plot. We want to try and fit a hypothesis function of the form:

H(z) = wy + wiz + waz?

o Note that while this is quadratic in horsepower, it is linear in the parameters!

o Thatis, itis a linear combination of features.

e \We can do that, by choosing our two "features" to be x; and :1322 respectively.

o |n other words, :132(1) = x; and x,§2) — xf

o More generally, we can create new features out of existing features.

29



A quadratic hypothesis function

e Desired hypothesis function: H(z) = wg + wix + waz?.

e The resulting design matrix looks like:
1 x%_

2
1 x2 x5

2
1 =z, =z

« To find the optimal parameter vector w*, we need to solve the normal equations!

X xo* = X1y



More examples

o What if we want to use a hypothesis function of the form:
H(z) = wo + wiz + wez? + wzx3?

o What if we want to use a hypothesis function of the form:

H(z) = wlé + wo sinx + wze®?

31



Feature engineering

e The process of creating new features out of existing information in our dataset is
called feature engineering.

e |n this class, feature engineering will mostly be restricted to creating non-linear
functions of existing features (as in the previous example).

e |n the future you'll learn how to do other things, like encode categorical information.

o You'll be exposed to this in Homework 4, Problem 5!

32



Non-linear functions of multiple features

e Recall our earlier example of predicting sales from square footage and number of
competitors. What if we want a hypothesis function of the form:

H (sqft, comp) = wy + w1 - sqft + ws - sqft® + ws - comp + wy - (sgft - comp)
= Wp + W18 + ’wzs2 + W3C + WySC

e The solution is to choose a design matrix accordingly:

1 sq 3% c1 Sici |

1 s 3% Co S9C9

3 M e o o

Cn SnCn



Finding the optimal parameter vector, w*

e Aslong as the form of the hypothesis function permits us to write h = Xw for some
X and w, the mean squared error is:

5 | 5
Ry (w) = gHy — Xwl|?

e Regardless of the values of X and g, the value of w* that minimizes R, (w) is the
solution to the normal equations:

XTxo* = X1y

34



Linear in the parameters

e We can fit rules like:

()2
wo + wix + wez? wie ¥+ wo cos(a:(Q) + ) + ws

o This includes arbitrary polynomials.

o These are all linear combinations of (just) features.

e We can't fit rules like:

w1

wy + e wo + sin(wizY + wez?)

o These are not linear combinations of just features!

e \We can have any number of parameters, as long as our hypothesis function is linear in

the parameters, or linear when we think of it as a function of the parameters.
35



Determining function form

e How do we know what form our hypothesis function should take?

e Sometimes, we know from theory, using knowledge about what the variables
represent and how they should be related.

o Other times, we make a guess based on the data.

o Generally, start with simpler functions first.
o Remember, the goal is to find a hypothesis function that will generalize well to
unseen data.

36



Example: Amdahl's Law

e Amdanhl's Law relates the runtime of a program on p processors to the time to do the

seqguential and nonsequential parts on one processor.
tNs

H(P):ts+7

e Collect data by timing a program with varying numbers of processors:

Processors Time (Hours)

1 3
2 4
4 3

37



Example: Fitting H(z) = wqy + w; - %

Processors Time (Hours)

1 8
2 4
4 3

38



How do we fit hypothesis functions that aren't linear in the
parameters?

e Suppose we want to fit the hypothesis function:
H(z) = woe™”
e Thisis not linear in terms of wgy and w1, so our results for linear regression don't apply.

e Possible solution: Try to apply a transformation.

39



Transformations

e Question: Can we re-write H () = wge™'* as a hypothesis function that is linear in
the parameters?

40



Transformations

e Solution: Create a new hypothesis function, T(a:) with parameters by and b1, where
T(ZE) = by + b1x.

This hypothesis function is related to H () by the relationship T'(z) = log H(x).

bis related to W by by = log wg and b; = w;.

log y |

: L. |logys
e Our new observation vector, z, is

log yn, |

o T'(x) = by + byxislinear in its parameters, by and b;.

e Use the solution to the normal equations to find b*, and the relationship between b
and w to find w*.



Once again, let's try it out! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec09/lec09-code.ipynb

Non-linear hypothesis functions in general

e Sometimes, it's just not possible to transform a hypothesis function to be linear in
terms of some parameters.

e |[nthose cases, you'd have to resort to other methods of finding the optimal
parameters.

o For example, H(x) = wq sin(wix) can't be transformed to be linear.

o But, there are other methods of minimizing mean squared error:

1 & :
Rsq(wo, w1) = — Z(yz — wo sin(w;z))”

n

o One method: gradient descent, the topic of the next lecture!

o Hypothesis functions that are linear in the parameters are much easier to work with.
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Roadmap

e This is the end of the content that's in scope for the Midterm Exam.

o Tomorrow and Wednesday, we'll introduce gradient descent, a technique for
minimizing functions that can't be minimized directly using calculus or linear algebra.

o After the Midterm Exam, we'll switch gears to probability.

44



