Lecture 9

Multiple Linear Regression

DSC 40A, Summer 2024



Announcements

e Homework 4 is due on Tuesday.

e Office hours schedule is different this week, due to the midterm exam.



The Midterm Exam is on Thursday, August 22nd!

750 (Qm
e The Midterm Exam is on Thursday, August 22nd in class. l { %
i L0

o 80 minutes, on paper, no calculators or electronics.
o You are allowed to bring one two-sided index card (4 inches by 6 inches) of
notes that you write by hand (no iPad).

e Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-3.

e Prepare by practicing with old exam problems at practice.dsc40a.com.
o Problems are sorted by topic!



Agenda

o Multiple linear regression.
o |nterpreting parameters.

e Feature engineering and transformations.



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.
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departure_hour day_of month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.



Incorporating multiple features

e |n the context of the commute times dataset, the simple linear regression model we fit
was of the form: _y ok W

pred. commute = H(departure hour)
= wo + w; - departure hour

o Now, we'll try and fit a multiple linear regression model of the form:» "‘Ln : k

pred. commute = H(departure hourﬁl M x} ok )
= wp + wq - departure hour + wy - day of month

e Linear regression with multiple featurés is called multiple linear regression.

e How do we find wy, wj, and wy? e e
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Geometric interpretation

e The hypothesis function:

H (departure hour) = wy + w; - departure hour

looks like a line in 2D.

e Questions: \
o How many dimensions do we need to graph.the hypothesis function:
Qr@m—\t H (departure hou%’ = wy + wy - departure hour + ws - day of month

o What is the shape of the hypothesis function?
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Commute Time vs. Departure Hour and Day of Month
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Our new hypothesis function is a plane in 3D!

Our goal is to find the plane of best fit that pierces through the cloud of points. 10



The setup
e Suppose we have the following dataset. \ N’h

eparture_hour day of month nutes

row

1 L8.45 221 63.0
2 8.90 28 89.0

3 8.72 18 89.0

e We can represent each day with a feature vector, Z:

AR
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The hypothesis vector

e When our hypothesis function is of the form:

H (departure hour) = wgy + w; - departure hour + w- - day of month

the hypothesis vector h € R™ can be written as:

" H(departure hour,,day;) (1 1 - I
Wo

H (departure hour,, day,) 1 departure hour, day,

- — . BN CS

"\
1 departure hour,, day, '@
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H(departure hour,, day,, )

, b i W :
k ' c}l,)\“am Muhn ¥ W et
! ‘)
dp:uvm\q
\J e

12



Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R7x3
and observation vector :

] R e T derg
—> | 1 departure hour; day;

—> | 1 departure hour, day,

@i | 1 departure hour,, day,, |

e Then, all we need to do is solve the normal equations:
X xw* = x*t
If X1 X is invertible, we know the solution is:

,lz‘]* _ (XTX)_lXT
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Notation for multiple linear regression |

o We will need to keep track of multiple features for every individual in our dataset.

o |n practice, we could have hundreds or thousands of features!

e As before, subscripts\‘distinguish between individuals in our dataset. We have n

. . . o o c- A te—
individuals, also called training examples.=5 <~ e 4 (
e Wwiwt o \eo-rn

o Superscripts distinguish between features. We have d features.

() @) (4) departure hour: z' et
X (X l,,.|x wvw\CWh

Think of w(l), :13(2), ...as new variable names, like new letters.

(’l\ ’ N et ﬂ \/\N,7HA
X\'\ | W\m &or o “

day of month: z(?)
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Augmented fW

« The augmented feature vector Aug(ﬁ) is the vector obtained by adding a 1to the

front of feature vector &:

e
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e Then, our hypothesis function is:

H(z) :@-1'— wiz W Avex P A

— & - Aug(7)
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The general problem |, LoSaws ( tho')
U
e We have n data points, (51, ), (552, ),..., (i’n, ) (Xz,‘ﬁ‘o) o (% 9n)
where each z; is a feature vector of d features: A X
- 1) \N\""“L
w(Z) —
L; —
(d)
Ly

o \We want to find a good linear hypothesis function:
H(Z) = wo +wiz™ +wez® + ... + wgz'?
= & - Aug(?)

& <
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The general solution

o Define the design matrix X € R™*(?*1) and observation vector

N (AP pr

Qv \‘ ’\d’:v\‘

W) N
oz Aug(z1)"
1 e _ [Aoet)
1 %(11) _Aug(fn)T_
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Terminology for parameters

e With d features, w has d + 1 entries.

e wy is the biasyalso known as theintercept.
———

ML : - . >
e Wi, Ws,...,W,each give the or@nt, or@ of a feature.

wmbLl

H(Z) = wo +@hz') + o™ + ... @iz
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Example: Predicting sales
e For each of 27/ stores, we have: n= 2 ol

o_net sales, _ §

o square feet,
o inventory,
o advertising expenditure,
o district size, and
o humber of competing stores.
o Goal: Predict net sales given the other five features.

e To begin, we'll start trying to fit the hypothesis function to predict sales:

w1 - square feet + ws - competitars

\
d=2

H (square feet, competitors) = wgy +




Question & PRORINGNT Lt s [ess
Answer at g.dsc40a.com ﬂ\

H (square feet, competitgors) = wy + ws - square feet + wy - competitors
—— shwey M jnie

L) ‘m‘bgbf

What will be the signs of w] and w5?

e A w] + w5+

—

o AWy — wy+
e Aw] — Wy —

Let's find out! Follow along in this notebook.
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Question =

Answer at g.dsc40a.com

Which feature is most "important"?
e A square feet: w} = 16.202

e B.competitors: w5 = —5.311
e C.inventory: ws = 0.175
e D.advertising: w, = 11.526

E. district size: w; = 13.580
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e
Which features are most "important"?

e The most important feature is not necessarily the feature with largest magnitude
weight.

e Features are measured in different units, i.e. different scales.
o Suppose | fit one hypothesis function, H1, with price in US dollars, and another
hypothesis function, Ho, with price in Japanese yen (1 USD = 146 yen).

o Price is just as important in both hypothesis functions.
o But the weight of price in H7 will be 146 times larger than the weight of price in
Hos. @V‘\Q Iy o~ &,NA

o Solution: If you care about the interpretability of the resulting weights, standardize

each feature before performing regression, i.e. convert each feature to standard units.
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Standard units

e Recall: to convert a feature 1, 9, ..., x, to standard units, we use the formula:

e Example:1,7,7, 9.

474749 _ 24 _ g
4 — 7 — v

o Standard deviation:

o Mean:

SD:\/l((1—6)2+(7—6)2+(7—6)2+(9—6)2):

4
o Standardized data:

1 — _
1|—>—6:—E 7»—>u:l 7
3 3 3 3

. 36 =3
1 —
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Standard units for multiple linear regression

e The result of standardizing each feature (separately!) is that the units of each feature
are on the same scale.

o There's no need to standardize the outcome (net sales), since it's not being
compared to anything.

o Also, we can't standardize the column of all 1s.

e Then, solve the normal equations. The resulting wy, wi, . . . , w}; are called the
standardized regression coefficients.

e Standardized regression coefficients can be directly compared to one another.

o Note that standardizing each feature does not change the MSE of the resulting
hypothesis function!

25



Once again, let's try it out! Follow along in this notebook.
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ransformations
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MPG vs. Horsepower

45-
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Question: Would a linear hypothesis function work well on this dataset?
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A quadratic hypothesis function

Ay W dagiie
o |t looks like there's some sort of quadratic relationship between horsepower and MPG
in the last scatter plot. We want to try and fit a hypothesis function of the form:

H(z) = wy + wiz Pwax? oy
(@) lwucvAsd W
o Note that while this is quadratic in horsepower, it islinear in the Barameters!
— T

o Thatis, itis a linear combination of features.

e \We can do that, by choosing our two "features" to be x; and :1322 respectively.

W
o In other words, :132(1) = 1Pz and x,§2) — x,g.‘{)

o More generally, we can create new features out of existing features.

- S
j}u’w«( Q\l‘o&\nee\l‘\'\ﬁ
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A quadratic hypothesis function

o Desired hypothesis function: H(z) = wg + w1z + wax

e The resulting design matrix looks like:

Ln

2

—————

r\

L

GM U((w\ﬂf‘“k
!

\  hp, Wy ?

; h; :3

\ Pn M( Jnx3

« To find the optimal parameter vector w*, we need to solve the normal equations!

X' xu* = X1y

>
W

[
=~ \')\

L\l~’1, J
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More examples — Wy~ ("‘ < 193) X Y« (W2wa) ’( Lolwrmany |
bratie ()m = solws
o What if we vant to use a hypothesis function of the form:
H(z) = wg + w1z + woz? + wiz>? ] b’vhow
ye )
X, xE x> o X I
7(—’ SELCEE B w= |V
— ¢ o o L \Val |
I %a X& x4 W=
o What if we want to use a hypothesis function of the form:
H(:z:)—wl + ws sin x + wze®? S
\
X
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X(b %o Uo — 5
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Feature engineering

e The process of creating new features out of existing information in our dataset is
called feature engineering.

e |n this class, feature engineering will mostly be restricted to creating non-linear
functions of existing features (as in the previous example).

e |n the future you'll learn how to do other things, like encode categorical information.

o You'll be exposed to this in Homework 4, Problem 5!
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Non-linear functions of multiple features

e Recall our earlier example of predicting sales from square footage and number of

competitors. What if we want a hypothesis function of the form:

H (sqft, comp) = wq + w1 - sqft + ws - sqft® + ws - comp + wy - (sgft - comp)

= Wp + W18 + ’wzs2 + W3C + WySC

e The solution is to choose a design matrix accordingly:

1 S1

1 S92
X —

1 s,

2
S1

2
S9

3 M e o o

C1

C2

Cn

$1C1

§2C2

SnCn

(\
>k
<
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e Aslong as the form of the hypothesis function permits us to write h :i('u? for some

Finding the optimal parameter vector, w*

X and w, the mean squared error is: i
— ]- — —
Rgq(w) = ;Hy — X’

e Regardless of the values of X and g, the value of w* that minimizes R, (w) is the
solution to the normal equations:

Xt xor = X1y
7)\‘% XTX i/\\f““"“\(’ |
T
~& T
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Linear in the parameters

e We can fit rules like:

()2
wo + wix + wez? wie ¥+ wo cos(a:(Q) + ) + ws

o This includes arbitrary polynomials.

o These are all linear combinations of (just) features.

e We can't fit rules like:

w1

wy + e wo + sin(wizY + wez?)

o These are not linear combinations of just features!

e \We can have any number of parameters, as long as our hypothesis function is linear in

the parameters, or linear when we think of it as a function of the parameters.
35



Determining function form

e How do we know what form our hypothesis function should take?

e Sometimes, we know from theory, using knowledge about what the variables
represent and how they should be related.

o Other times, we make a guess based on the data.

o Generally, start with simpler functions first.
o Remember, the goal is to find a hypothesis function that will generalize well to
unseen data.
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Example: Amdahl's Law

e Amdanhl's Law relates the runtime of a program on p processors to the time to do the

sequential and nonsequential parts on one processor.
tNs

H(P):ts+7

e Collect data by timing a program with varying numbers of processors:

Processors Time (Hours)

1 3
2 4
4 3

37



Example: Fitting H (x) = wo + wy - %

Processors Time (Hours)

1 3
2 4
4 3
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How do we fit hypothesis functions that aren't linear in the
parameters?

e Suppose we want to fit the hypothesis function:
H(z) = woe™”
e Thisis not linear in terms of wgy and w1, so our results for linear regression don't apply.

e Possible solution: Try to apply a transformation.

39



Transformations

e Question: Can we re-write H () = wge™'* as a hypothesis function that is linear in
the parameters?

40



Transformations

e Solution: Create a new hypothesis function, T(a:) with parameters by and b1, where
T(ZE) — by + b1x.

This hypothesis function is related to H () by the relationship T'(z) = log H(x).

bis related to W by by = log wg and b; = w;.

log y |

: L. |logys
e Our new observation vector, z, is

log yn, |

o T'(x) = by + byxislinear in its parameters, by and b;.

e Use the solution to the normal equations to find b*, and the relationship between b
and w to find w*.



Once again, let's try it out! Follow along in this notebook.
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Non-linear hypothesis functions in general

e Sometimes, it's just not possible to transform a hypothesis function to be linear in
terms of some parameters.

e |nthose cases, you'd have to resort to other methods of finding the optimal
parameters.

o For example, H(x) = wq sin(wix) can't be transformed to be linear.

o But, there are other methods of minimizing mean squared error:

1 & :
Rsq(wo, w1) = — Z(yz — wo sin(w;z))*

n

o One method: gradient descent, the topic of the next lecture!

o Hypothesis functions that are linear in the parameters are much easier to work with.
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Roadmap

e This is the end of the content that's in scope for the Midterm Exam.

o Tomorrow and Wednesday, we'll introduce gradient descent, a technique for
minimizing functions that can't be minimized directly using calculus or linear algebra.

o After the Midterm Exam, we'll switch gears to probability.
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