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Homework 4 is due tonight.
Please remember to select pages in your Gradescope submission.

We're going to start penalizing for submissions without pages selected.
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The Midterm Exam is on Thursday, August 22nd in class.

80 minutes, on paper, no calculators or electronics.

You are allowed to bring one two-sided index card (4 inches by 6 inches) of
notes that you write by hand (no iPad).

Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-3.

Prepare by practicing with old exam problems at practice.dsc40a.com.
Problems are sorted by topic!

Come by office hours to review.

Nishant holds OH this afternoon, Jack tomorrow AM virtually.

Some time for review in discussion tomorrow.
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https://practice.dsc40a.com/
https://dsc40a.com/calendar/


Feature engineering and transformations.

Minimizing functions using gradient descent.

4



Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!
If the direct link doesn't work, click the "  Lecture Questions"

link in the top right corner of dsc40a.com.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/


Feature engineering and transformations
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Question: Would a linear hypothesis function work well on this dataset?
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We can fit rules like:

This includes arbitrary polynomials.

These are all linear combinations of (just) features.

We can't fit rules like:

These are not linear combinations of just features!

We can have any number of parameters, as long as our hypothesis function is linear in
the parameters, or linear when we think of it as a function of the parameters.
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Amdahl's Law relates the runtime of a program on  processors to the time to do the
sequential and nonsequential parts on one processor.

Collect data by timing a program with varying numbers of processors:

Processors Time (Hours)

1 8

2 4

4 3
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Processors Time (Hours)

1 8

2 4

4 3
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Suppose we want to fit the hypothesis function:

This is not linear in terms of  and , so our results for linear regression don't apply.

Possible solution: Try to apply a transformation.
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Question: Can we re-write  as a hypothesis function that is linear in
the parameters?
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Solution: Create a new hypothesis function, , with parameters  and , where
.

This hypothesis function is related to  by the relationship .

 is related to  by  and .

Our new observation vector, , is .

 is linear in its parameters,  and .

Use the solution to the normal equations to find , and the relationship between 

and  to find . 13



Once again, let's try it out! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec10/lec10-code.ipynb


Sometimes, it's just not possible to transform a hypothesis function to be linear in
terms of some parameters.

In those cases, you'd have to resort to other methods of finding the optimal
parameters.

For example, can't be transformed to be linear.

But, there are other methods of minimizing mean squared error:

One method: gradient descent, the topic we're going to look at next!

Hypothesis functions that are linear in the parameters are much easier to work with.
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Answer at q.dsc40a.com

Which hypothesis function is not linear in the parameters?

A. 

B. 

C. 

D. 

E. More than one of the above.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform


This is the end of the content that's in scope for the Midterm Exam.

Now, we'll introduce gradient descent, a technique for minimizing functions that can't

be minimized directly using calculus or linear algebra.

After the Midterm Exam, we'll switch gears to probability.
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1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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Minimizing functions using gradient descent
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Repeatedly, we've been tasked with minimizing the value of empirical risk functions.
Why? To help us find the best model parameters,  or , which help us make

the best predictions!

We've minimized empirical risk functions in various ways.
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Assume  is some differentiable single-variable function.

When tasked with minimizing , our general strategy has been to:

i. Find , the derivative of .

ii. Find the input  such that .

However, there are cases where we can find , but it is either difficult or

impossible to solve .

Then what?
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Goal: Given a differentiable function , find the input  that minimizes .

What does  mean?
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See dsc40a.com/resources/lectures/lec10 for an animated version of the

previous slide!
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https://dsc40a.com/resources/lectures/lec10


Suppose you're at the top of a
mountain  and need to get to the

bottom.

Further, suppose it's really cloudy

, meaning you can only see a few
feet around you.

How would you get to the bottom?
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Suppose we're given an initial

guess for a value of  that
minimizes .

If the slope of the tangent line
at  is positive :

Increasing increases .

This means the minimum

must be to the left of the
point .

Solution: Decrease .
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Suppose we're given an initial

guess for a value of  that
minimizes .

If the slope of the tangent line
at  is negative :

Increasing decreases .

This means the minimum

must be to the right of the
point .

Solution: Increase .
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To minimize , start with an initial guess .

Where do we go next?

If , decrease .

If , increase .

One way to accomplish this:
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To minimize a differentiable function :

Pick a positive number, . This number is called the learning rate, or step size.

Pick an initial guess, .

Then, repeatedly update your guess using the update rule:

Repeat this process until convergence – that is, when  doesn't change much.

This procedure is called gradient descent.
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Gradient descent is a numerical method for finding the input to a function  that
minimizes the function.

Why is it called gradient descent?

The gradient is the extension of the derivative to functions of multiple variables.

We will see how to use gradient descent with multivariate functions next class.

What is a numerical method?

A numerical method is a technique for approximating the solution to a
mathematical problem, often by using the computer.

Gradient descent is widely used in machine learning, to train models from linear
regression to neural networks and transformers (includng ChatGPT)!
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See dsc40a.com/resources/lectures/lec10 for animated examples of

gradient descent, and see this notebook for the associated code!
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https://dsc40a.com/resources/lectures/lec10
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec10/lec10-code.ipynb


Next class, we'll explore the following ideas:

When is gradient descent guaranteed to converge to a global minimum?

What kinds of functions work well with gradient descent?

How do I choose a step size?

How do I use gradient descent to minimize functions of multiple variables, e.g.:
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While gradient descent can minimize
other kinds of differentiable functions, its

most common use case is in minimizing
empirical risk.

For example, consider:

The constant model, .

The dataset .

The initial guess  and the
learning rate .

Exercise: Find  and .
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