Lecture 10

Feature Engineering, Gradient Descent

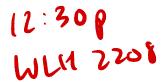
DSC 40A, Summer 2024

Announcements

- Homework 4 is due tonight.
 - o Please remember to select pages in your Gradescope submission.
 - We're going to start penalizing for submissions without pages selected.

The Midterm Exam is on Thursday, August 22nd!

• The Midterm Exam is on **Thursday, August 22nd in class**.



- 80 minutes, on paper, no calculators or electronics.
 - You are allowed to bring one two-sided index card (4 inches by 6 inches) of notes that you write by hand (no iPad).
- Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-3.
- Prepare by practicing with old exam problems at practice.dsc40a.com.
 - Problems are sorted by topic!
 - Come by office hours to review.
 - Nishant holds OH this afternoon, Jack tomorrow AM virtually.
- Some time for review in discussion tomorrow.

Agenda

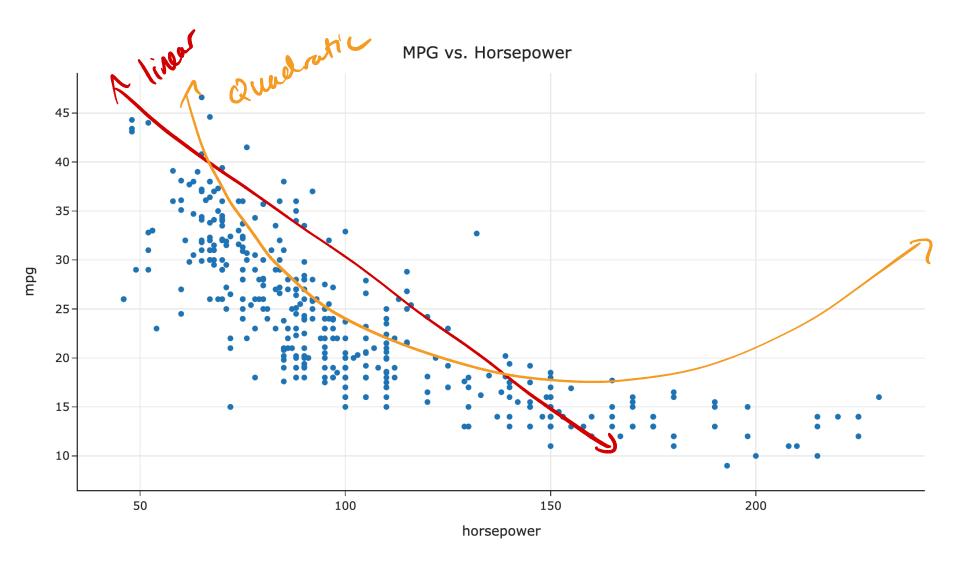
- Feature engineering and transformations. In Supe.
 Minimizing functions using gradient descent. I not in Supe for MT

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Feature engineering and transformations

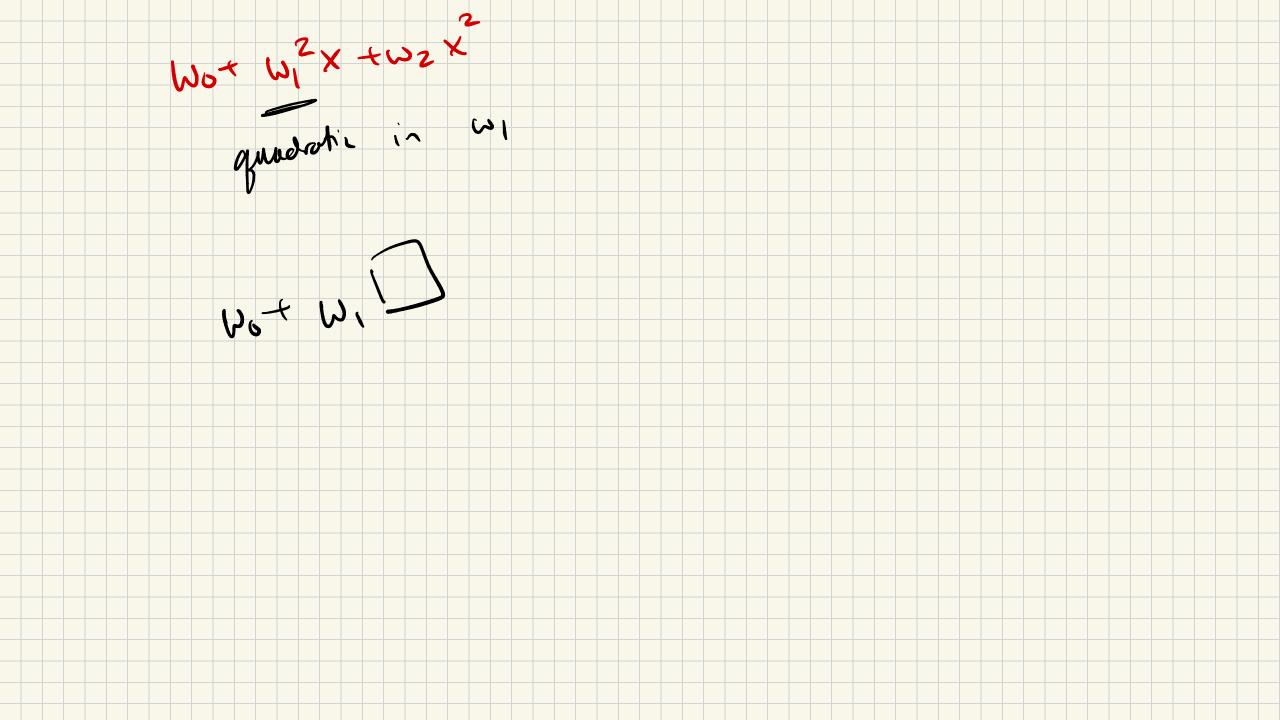


Question: Would a linear hypothesis function work well on this dataset?

• We can fit rules like:

$$w_0 + w_1 x + w_2 x^2 \qquad w_1 e^{-x^{(1)^2}} + w_2 \cos(x^{(2)} + \pi) + w_3 rac{\log 2x^{(3)}}{x^{(2)}}$$

- This includes arbitrary polynomials.
- We can't fit rules like: Not good not good! $w_0 + e^{w_1 x} \qquad w_0 + \sin(w_1 x^{(1)} + w_2 x^{(2)})$
 - These are **not** linear combinations of just features!
- We can have any number of parameters, as long as our hypothesis function is **linear in** the parameters, or linear when we think of it as a function of the parameters.



Example: Amdahl's Law

ullet Amdahl's Law relates the runtime of a program on p processors to the time to do the

Processors	Time (Hours)
1	8
2	4
4	3

Example: Fitting
$$H(x)=w_0+w_1\cdot \frac{1}{x}$$
 feature

Processors Time (Hours)

1 8 - 1/2 | 1/2 | 1/2 | 1/2 | 1/4 | 3 | 1/4 | 3 | 1/4 | 3 | 1/4 | 3 | 1/4 | 3 | 1/4 | 3 | 1/4 | 3 | 1/4 | 3 | 1/4 |

What we wozand U1? Save (XTX) $\vec{w} = X^T \vec{\gamma}$

system of 2 equations, 2 variables

= (xxx)-1 Xx y

XX invertible b/c X is full rank-) all columns are linearly independent

How do we fit hypothesis functions that aren't linear in the parameters?

• Suppose we want to fit the hypothesis function:

$$H(x)=w_0e^{w_1x} \\$$

- This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.
- Possible solution: Try to apply a transformation.

Transformations

ullet Question: Can we re-write $H(x)=w_0e^{w_1x}$ as a hypothesis function that **is** linear in

y= wie

Transformations

- **Solution**: Create a new hypothesis function, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
- This hypothesis function is related to H(x) by the relationship $T(x)=\log H(x)$.
 \vec{b} is related to \vec{w} by $b_0=\log w_0$ and $b_1=w_1$.

• This hypothesis function is related to
$$H(x)$$
 by the relationship $T(x) = \log v$.
• \vec{b} is related to \vec{w} by $b_0 = \log w_0$ and $b_1 = w_1$.
• Our new observation vector, \vec{z} , is
$$\begin{bmatrix} \log y_1 \\ \log y_2 \\ \dots \\ \log y_n \end{bmatrix}$$
.

- $T(x)=b_0+b_1x$ is linear in its parameters, b_0 and b_1 .
- ullet Use the solution to the normal equations to find $ec{b}^*$, and the relationship between $ec{b}$ and \vec{w} to find \vec{w}^* .

Once again, let's try it out! Follow along in this notebook.

Non-linear hypothesis functions in general

- Sometimes, it's just not possible to transform a hypothesis function to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - \circ For example, $H(x)=w_0\sin(w_1x)$ can't be transformed to be linear.
 - But, there are other methods of minimizing mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (y_i - w_0 \sin(w_1 x))^2$$

- One method: gradient descent, the topic we're going to look at next!
- Hypothesis functions that are linear in the parameters are much easier to work with.

assure no transformations

Answer at q.dsc40a.com

Which hypothesis function is not linear in the parameters?

A.
$$H(\vec{x}) = w_1(x^{(1)}x^{(2)}) + \frac{w_2}{x^{(1)}}\sin(x^{(2)})$$
B. $H(\vec{x}) = 2^{w_1}x^{(1)}$
 w_2
 w_3
 w_4
 w_4
 w_5
 w_5
 w_6
 w

C.
$$H(ec{x}) = ec{w} \cdot \operatorname{Aug}(ec{x})$$
of D. $H(ec{x}) = w_1 \cos(x^{(1)}) + w_2 2^{x^{(2)} \log x^{(3)}}$

• E. More than one of the above.

Roadmap

- This is the end of the content that's in scope for the Midterm Exam.
- Now, we'll introduce **gradient descent**, a technique for minimizing functions that can't be minimized directly using calculus or linear algebra.
- After the Midterm Exam, we'll switch gears to probability.

I figuring out the best way to make predictions!

The modeling recipe

- 1. Choose a model.
- () H(x)=h, constant
- 3 SUR HLX = WOT WIX
 - 2. Choose a loss function.
- @ Squeed loss: (yi- H(xi))2

- - (b) absolute: |4;-H(xi)) @ 0-1 loss
- actual predicted a predicted application squared (six: HW2 empirical with seef with the squared (six: HW2).

 3. Minimize average loss to find optimal model parameters.
- (a) Rsq (h) = 1 & (y; -h)2 => h= Mean(y,1y2...yn)
- 26) programming Q on HW3

Asq (w) = 1/1/3- Xwll

by withou,

Minimizing functions using gradient descent

Minimizing empirical risk

- Repeatedly, we've been tasked with minimizing the value of empirical risk functions.
 - \circ Why? To help us find the **best** model parameters, h^* or w^* , which help us make the **best** predictions!
- We've minimized empirical risk functions in various ways.

$$\circ \ R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2$$
 — calculus

$$\circ \ R_{\mathrm{abs}}(w_0,w_1)=rac{1}{n}\sum_{i=1}^n|y_i-(w_0+w_1x)|$$
 $ightarrow$ but

$$\circ R_{
m sq}(ec{w}) = rac{1}{n} \|ec{y} - X ec{w}\|^2 - \text{linear algebra: spans, projections}$$
 $ec{w} = (X^T X)^T X^T Y$

derivative exists everywhere

Minimizing arbitrary functions >

- Assume f(t) is some **differentiable** single-variable function.
- When tasked with minimizing f(t), our general strategy has been to:

i. Find $\frac{df}{dt}(t)$, the derivative of f.

ii. Find the input t^* such that $\frac{df}{dt}(t^*)=0$.

• However, there are cases where we can find $\frac{df}{dt}(t)$, but it is either difficult or impossible to solve $\frac{df}{dt}(t^*)=0$.

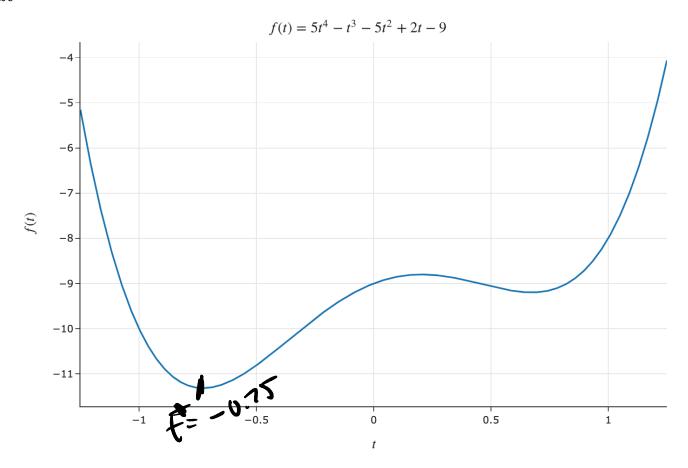
$$f(t) = 5t^4 - t^3 - 5t^2 + 2t - 9$$

$$\frac{df}{dt}(t) = 20t^3 - 3t - 10t + 2$$

Then what?

What does the derivative of a function tell us?

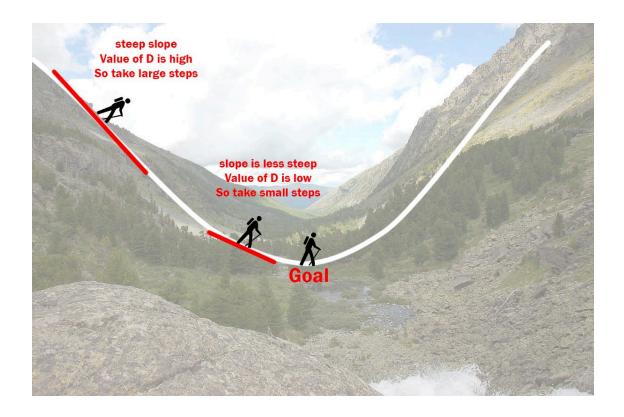
- Goal: Given a differentiable function f(t), find the input t^* that minimizes f(t).
- What does $\frac{d}{dt}f(t)$ mean?



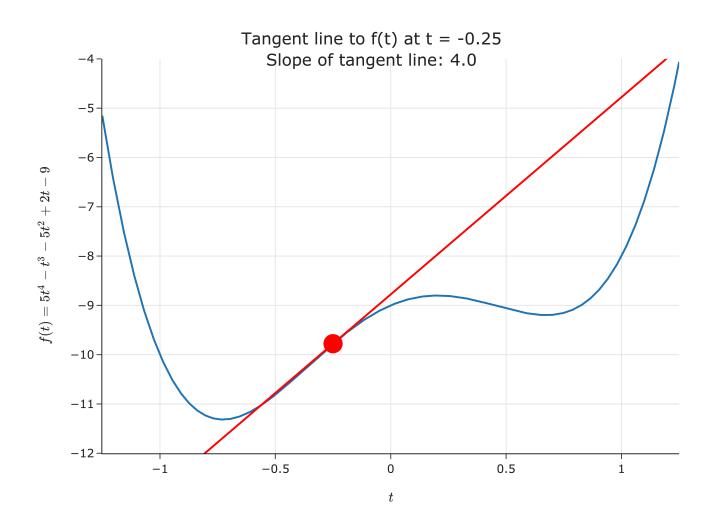
See dsc40a.com/resources/lectures/lec10 for an animated version of the previous slide!

Let's go hiking!

- Suppose you're at the top of a mountain and need to get to the bottom.
- Further, suppose it's really cloudy
 , meaning you can only see a few feet around you.
- How would you get to the bottom?



Searching for the minimum

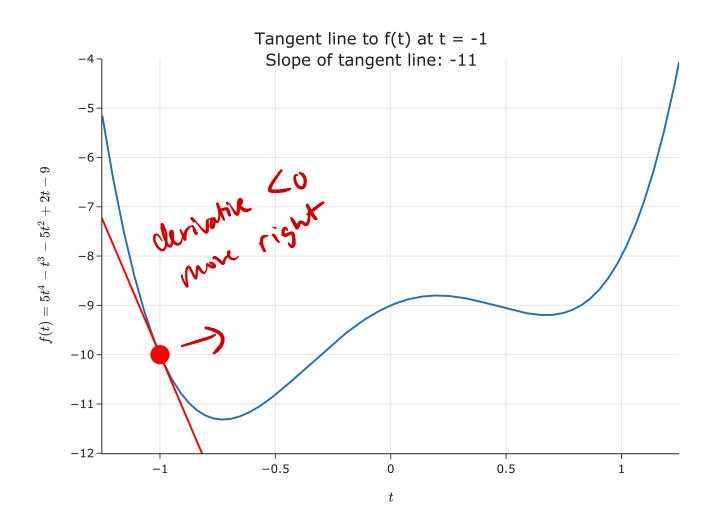


Suppose we're given an initial guess for a value of t that minimizes f(t).

If the slope of the tangent line at f(t) is positive \mathbb{Z} :

- Increasing t increases f.
- This means the minimum must be to the **left** of the point (t, f(t)).
- Solution: **Decrease** *t* .

Searching for the minimum



Suppose we're given an initial guess for a value of t that minimizes f(t).

If the slope of the tangent line at f(t) is negative \mathbf{N} :

- Increasing t decreases f.
- This means the minimum must be to the **right** of the point (t, f(t)).
- Solution: Increase t 1.

Intuition

to, ti, ... = quesses for the to that minimizes flt

- To minimize f(t), start with an initial guess t_0 .
- Where do we go next?
 - \circ If $rac{df}{dt}(t_0)>0$, decrease t_0 .
 - \circ If $rac{df}{dt}(t_0) < 0$, increase t_0 .
- One way to accomplish this:

$$t_1 = t_0 - \frac{df}{dt}(t_0)$$

opposite the direction of the derivative

Gradient descent

To minimize a **differentiable** function f:

- When alf (ti) is small, we take smaller steps since we're above to the minimum
- Pick a positive number, α . This number is called the **learning rate**, or **step size**.
- Pick an **initial guess**, t_0 .
- Then, repeatedly update your guess using the update rule:

iteraticly

$$t_{i+1} = t_i - \alpha \frac{df}{dt}(t_i)$$
 a small: small skys steps size - a big: big steps walking opposite to direction of derivative

- ullet Repeat this process until **convergence** that is, when t doesn't change much.
- This procedure is called **gradient descent**.

What is gradient descent?

- ullet Gradient descent is a numerical method for finding the input to a function f that minimizes the function.
- Why is it called gradient descent?
 - $\circ~$ The gradient is the extension of the derivative to functions of multiple variables.
 - We will see how to use gradient descent with multivariate functions next class.
- What is a numerical method?
 - A numerical method is a technique for approximating the solution to a mathematical problem, often by using the computer.
- Gradient descent is widely used in machine learning, to train models from linear regression to neural networks and transformers (including ChatGPT)!

See dsc40a.com/resources/lectures/lec10 for animated examples of gradient descent, and see this notebook for the associated code!

Lingering questions

Next class, we'll explore the following ideas:



- When is gradient descent guaranteed to converge to a global minimum?
 - What kinds of functions work well with gradient descent?
- How do I choose a step size?
- How do I use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

Gradient descent and empirical risk minimization

- While gradient descent can minimize other kinds of differentiable functions, its most common use case is in minimizing empirical risk.
- For example, consider:
 - \circ The constant model, H(x)=h.
 - \circ The dataset -4, -2, 2, 4.
 - \circ The initial guess $h_0=4$ and the learning rate $lpha=rac{1}{4}$.
- Exercise: Find h_1 and h_2 .