Lecture 10

Feature Engineering, Gradient
Descent

DSC 40A, Summer 2024



Announcements

e Homework 4 is due tonight.
o Please remember to select pages in your Gradescope submission.

o We're going to start penalizing for submissions without pages selected.



The Midterm Exam is on Thursday, August 22nd! b0p
(L
e The Midterm Exam is on Thursday, August 22nd in class. LoLH 2204

o 80 minutes, on paper, no calculators or electronics.
o You are allowed to bring one two-sided index card (4 inches by 6 inches) of
notes that you write by hand (no iPad).

Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-3.

Prepare by practicing with old exam problems at practice.dsc40a.com.
o Problems are sorted by topic!

o Come by office hours to review.
o Nishant holds OH this afternoon, Jack tomorrow AM virtually.

Some time for review in discussion tomorrow.



Agenda

o Feature engineering and transformations.7 I 5w{7°\'

e Minimizing functions using gradient descent.l Aot da Sto( (FN‘ T



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.
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MPG vs. Horsepower
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Question: Would a linear hypothesis function work well on this dataset?
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e We can fit rules like:
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o This includes arbitrary polynomials.

o These are all linear combinations of (just) features. U-*‘K \H“" )

e We can't fit rules like: /V\""’\' v wr apoed CX)
/ /
wy + e wo + sin(wizY + wez?)

o These are not linear combinations of just features!

e \We can have any number of parameters, as long as our hypothesis function is linear in
the parameters, or linear when we think of it as a function of the parameters.






Example: Amdahl's Law

e Amdanhl's Law relates the runtime of a program on p processors to the time to do the
sequential and nonsequential parts on one processor.
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e Collect data’by timing a program with varying numbers of processors:

Processors Time (Hours)
1 8
2 4
4 3
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How do we fit hypothesis functions that aren't linear in the
parameters?

e Suppose we want to fit the hypothesis function:

H(z) = woe™”

e Thisis not linear in terms of wy and w1, so our results for linear regression don't apply.

e Possible solution: Try to apply a transformation.
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Transformations

e Question: Can we re-write H () = we™'* as a hypothesis function that is linear in

the parameters? FETAL
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Transformations

u\X
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Solution: Create a new hypothesis function, T(a:) with parameters by and b1, where
T(ZE) — by + b1x.

This hypothesis function is related to H () by the relationship T'(z) = log H(x).

. v UbieAnbtie
bis related to W by by = log wy and by = w. vV ek
y bg g Wo " 1 _ 1 [p/ 4
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T =
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Our new observation vector, 2, is : 7)
_logyn_ W\'&,\V{

T(x) = by + bixislinear in its parameters, by and b;.

Use the solution to the normal equations to find b*, and the relationship between b
and w to find w*.
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Once again, let's try it out! Follow along in this notebook.
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Non-linear hypothesis functions in general

e Sometimes, it's just not possible to transform a hypothesis function to be linear in
terms of some parameters.

e |nthose cases, you'd have to resort to other methods of finding the optimal
parameters.

o For example, H(x) = wq sin(wix) can't be transformed to be linear.

o But, there are other methods of minimizing mean squared error:

1 & :
Rsq(wo, w1) = — Z(yz — wo sin(w;z))*

n

o One method: gradient descent, the topic we're going to look at next!

o Hypothesis functions that are linear in the parameters are much easier to work with.
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Roadmap

e This is the end of the content that's in scope for the Midterm Exam.

e Now, we'll introduce gradient descent, a technique for minimizing functions that can't
be minimized directly using calculus or linear algebra.

o After the Midterm Exam, we'll switch gears to probability.
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g gradient descent
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Minimizing empirical risk

o Repeatedly, we've been tasked with minimizing the value otgmpirical risk functions.

o Why? To help us find the best model parameters, h* or w*, which help us make
the best predictions!

o \We've minimized empirical risk functions in various ways.
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Minimizing arbitrary functions /7
o Assume f(t) is some differentiable single-variable function.

e When tasked with minimizing f(¢), our general strategy has been to:

i. Find %(t), the derivative of f. X "“"‘f"w&k i
ii. Find the input £* such that Z—{(t*) = 0. )(S-‘ X~ |=0
e However, there are cases where we can find CCZZ—{ (t) but it is either difficult or
impossible to solve Z—{ (t*) = 0.

f(t) =5t —t> —5t2 +2t — 9

d/’: e 20k> -2k —\ok %3~
&

e Then what?
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What does the derivative of a function tell us?

o Goal: Given a differentiable function f(t), find the input t* that minimizes f(¢).

e What does -2 f(¢) mean?

fO =5 -1 =52 +2t-9
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See dsc40a.com/resources/lectures/lec10 for an animated version of the
previous slide!
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Let's go hiking!

e Suppose you're at the top of a
mountain A and need to get to the
bottom.

e Further, suppose it's really cloudy
, meaning you can only see a few
feet around you.

e How would you get to the bottom?

steep slope
Value of D is high
So take large steps

slope is less steep
alug\of D is low
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Searching for the minimum

5t — 3 — 512 +2t—9

f(t)

Tangent line to f(t) at t = -0.25
Slope of tangent line: 4.0

Suppose we're given an initial
guess for a value of £ that
minimizes f(t).

If the slope of the tangent line
at f(t) is positive »/:
e Increasing t increases f.

¢ This means the minimum
must be to the left of the

point (¢, f(t)).

e Solution: Decrease t 4.
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Searching for the minimum

5t — 3 — 512 +2t—9

f(t)

Tangent line to f(t) att = -1
Slope of tangent line: -11

Suppose we're given an initial
guess for a value of £ that
minimizes f(t).

If the slope of the tangent line
at f(t) is negative "\:
e Increasing t decreases f.

¢ This means the minimum
must be to the right of the

point (¢, f(t)).

e Solution: Increase t £3.
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o To minimize f(t), start with an initial guess t.

Intuition

e \Where do we go next?
o If Z—{ (to) > 0,decrease .

o If Z—{(to) < 0, increase t.

e One way to accomplish this:
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To minimize a differentiable function f:

C“ww«\-b \1,.9\ yw\\/\fmu-«v“‘

Pick a positive number, a. This number is called the learning rate, or step size.
Pick an initial guess, {.

Then, repeatedly update your guess using the update rule:

ety df S
tiv1 =1 — O‘E(ti) o Swolk - swolk ¥4
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Repeat this process until convergence - that is, when ¢ doesn't change much.

This procedure is called gradient descent.
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What is gradient descent?

o Gradient descent is a numerical method for finding the input to a function f that
minimizes the function.

e Why is it called gradient descent?

o The gradient is the extension of the derivative to functions of multiple variables.

o We will see how to use gradient descent with multivariate functions next class.
e What is a numerical method?

o A numerical method is a technique for approximating the solution to a
mathematical problem, often by using the computer.

e Gradient descent is widely used in machine learning, to train models from linear
regression to neural networks and transformers (includng ChatGPT)!
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See dsc40a.com/resources/lectures/lec10 for animated examples of
gradient descent, and see this notebook for the associated code!
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Lingering questions y (o~
o 00

Next class, we'll explore the following ideas: “J
P g Uw\\,e»“
e When is gradient descent guaranteed to converge to a global minimum?

o What kinds of functions work well with gradient descent?

e How do | choose a step size?

e How do | use gradient descent to minimize functions of multiple variables, e.g.:

Ryy(wo, w1) = - Zn:(yz' — (wp + wiz;))”

n
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Gradient descent and empirical risk minimization

o While gradient descent can minimize
other kinds of differentiable functions, its
most common use case is in minimizing
empirical risk.

e For example, consider:

o The constant model, H(xz) = h.
o The dataset —4, —2, 2, 4.

o Theinitial guess hy = 4 and the
1

learning rate = .

e Exercise: Find h1 and h».
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