Lecture 11

Gradient Descent, Continued

DSC 40A, Summer 2024



Announcements

e The Midterm Exam is tomorrow!

e Some time for review in Discussion today, and Owen's OH 4-5p in HDSI 155.



Agenda

e Recap: Gradient descent.
o Convexity.

e More examples.
o Huber loss.

o Gradient descent with multiple variables.



DK

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/




What's the point?

o Goal: Given a differentiable function f(t), find the input t* that minimizes f(¢).

e What does -2 f(t) mean?

fO=5t" -1 =52 +2t-9
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Gradient descent

To minimize a differentiable function f:

e Pick a positive number, .. This number is called the learning rate, or step size.
e Pick an initial guess, {.
e Then, repeatedly update your guess using the update rule:

d
b =t~ a0 (1)

Repeat this process until convergence - that is, when ¢ doesn't change much.

This procedure is called gradient descent.



What is gradient descent?

« Gradient descent is a numerical method for finding the input to a function f that
minimizes the function.

e Why is it called gradient descent?

o The gradient is the extension of the derivative to functions of multiple variables.

o We will see how to use gradient descent with multivariate functions next class.
e What is a numerical method?

o A numerical method is a technique for approximating the solution to a
mathematical problem, often by using the computer.

e Gradient descent is widely used in machine learning, to train models from linear
regression to neural networks and transformers (includng ChatGPT)!



See dsc40a.com/resources/lectures/lec10 for animated examples of
gradient descent, and see this notebook for the associated code!


https://dsc40a.com/resources/lectures/lec10
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec11/lec11-code.ipynb

Gradient descent and empirical risk minimization

o While gradient descent can minimize
other kinds of differentiable functions, its
most common use case is in minimizing
empirical risk.

e For example, consider:

o The constant model, H(xz) = h.
o Squared loss.
o The dataset —4, —2, 2, 4.

o The initial guess hy = 4 and the

1

learning rate = .

e Exercise: Find h; and hs.
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Lingering questions
Now, we'll explore the following ideas:

e When is gradient descent guaranteed to converge to a global minimum?
o What kinds of functions work well with gradient descent?

e How do | choose a step size?

e How do | use gradient descent to minimize functions of multiple variables, e.g.:

Ryy(wo, w1) = - Zn:(yz' — (wp + wiz;))”

n
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guaranteed to work?
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Convex functions
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Convexity

o Afunction f is convex if, for every a, b in the domain of f, the line segment between:

(a, f(a)) and (b, f(b))

does not go below the plot of f.

——————

——————

A convex function A non-convex function X



Formal definition of convexity

o Afunction f : R — R is convex if, for every
a, bin the domain of f, and for every

t €0,1]:

(1 —)f(a) +tf(b) > F((1 —t)a + tb)

e This is a formal way of restating the definition
from the previous slide.
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Question =

DK

Answer at g.dsc40a.com

Which of these functions are not convex?

.Af

() = |33\
(»’C)

flx) =+vax—1.
D. f(:c) = (z — 3)*.

E. More than one of the above are non-convex.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Second derivative test for convexity

o If f(t) is a function of a single variable and is twice differentiable, then f(t) is convex
if and only if:

d2f
—5 ()20, vt
4

« Example: f(x) = z* is convex.
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Why does convexity matter?
o Convex functions are (relatively) easy to minimize with gradient descent.

« Theorem: If f(t) is convex and differentiable, then gradient descent converges to a
global minimum of f, as long as the step size is small enough.

e Why?

o Gradient descent converges when the derivative is O.
o For convex functions, the derivative is O only at one place - the global minimum.

o In other words, if f is convex, gradient descent won't get "stuck" and terminate in
places that aren't global minimums (local minimums, saddle points, etc.).
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Nonconvex functions and gradient descent
e We say a function is nonconvex if it does not meet the criteria for convexity.
e Nonconvex functions are (relatively) difficult to minimize.
e Gradient descent might still work, but it's not guaranteed to find a global minimum.

o We saw this at the start of the lecture, when trying to minimize
f(t) =5t —t3 — 5t + 2t — 9.
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Choosing a step size in practice
e |n practice, choosing a step size involves a lot of trial-and-error.

e |n this class, we've only touched on "constant” step sizes, i.e. where «x is a constant.

df
t =1, —o—
’L—l—]. dt ( )
e Remember: « is the "step size", but the amount that our guess for £ changes is
accll—{ (¢;), not just c.

o |n future courses, you'll learn about "decaying” step sizes, where the value of «
decreases as the number of iterations increases.

o Intuition: take much bigger steps at the start, and smaller steps as you progress,
as you're likely getting closer to the minimum.
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Example: Huber loss and the constant model

o First, we learned about squared loss,
Lsg(yi, H(z:)) = (yi — H(=:))".

e Then, we learned about absolute loss,
Lans(yi, H(x;)) = |y; — H(x;)|-

e Let'slook at a new loss function, Huber loss:

Ly; — H(x,))’ i |ys — H(z,)| <0

Liuber iaH i)) — ] -
huber (Yis H (Z:)) {5, (lys — H(z;)| — +6) otherwise
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Squared loss in blue, Huber loss in green.

Note that both loss functions are convex! o



Minimizing average Huber loss for the constant model

o For the constant model, H(x) = h:

l(-—h)z 'f‘._h‘<5
Y; if |y; <
L uber ’i7h — ’
huber (Yi; P) {5, (lys — h| — %5) otherwise

OL —(y; — h) if ly; — h| <6

— %(h) B {—5 -sign(y; — h) otherwise

e So, the derivative of empirical risk is:

dRhuber - ( if |yz — h| <9
dh —J - — h) otherwise

1=1
e It'simpossible to set dRh“bef (h) = 0 and solve by hand: we need gradient descent!
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Let's try this out in practice! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec11/lec11-code.ipynb

Minimizing functions of multiple variables

e Consider the function:

f(z1,22) = (x1 — 2)* 4+ 221 — (22 — 3)°

e |t has two partial derivatives: g_f and g—f.
L1 i)
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The gradient vector

o If f(&) is afunction of multiple variables, then its gradient, V f(z), is a vector
containing its partial derivatives.

e Example:
f(&) = (x1 —2)* + 221 — (22 — 3)°
o\ 2.’131 — 2
LR
e Example:
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Gradient descent for functions of multiple variables

e Example:

f(z1,22) = (x1 — 2)* 4+ 221 — (22 — 3)°
Sy _25131 — 2
VHE = |

o
L1

e The minimizer of f is a vector, z* = [ -
Lo

o We start with an initial guess, 55(0), and step size «, and update our guesses using:

Z+1) — 20) _ an(f(i))
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Exercise
f(z1,29) = (21 — 2)* + 221 — (z2 — 3)°

AR P

Z+1) — 20) _ an(E(i))

81

Given an initial guess of 70) — [O] and a step size of a = % perform two iterations of

gradient descent. What is 7(2)?
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Example: Gradient descent for simple linear regression

e To find optimal model parameters for the model H(:B) = wp + wix and squared
loss, we minimized empirical risk:

Ruafuw, w1) =+ 3 (05 — (g + i)’

e This is a function of multiple variables, and is differentiable, so it has a gradient!

——Z (wo + wiz;))

—— Z (wo + wix;))x;

o Key idea: To find fw(’; and wl, we could use gradient descent!



Gradient descent for simple linear regression, visualized

R('UJ(, wl)

Parameters: wg = —0.8,w; = —5.8
gl R(wo,w;) =29.5

Gradient

e

Step Size = 0.1 Negative Gradient

Let's watch »& this animation that Jack made.
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https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E
https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E

What's next?

e The Midterm Exam is tomorrow, in this room!

e In Homework 5, you'll see a few questions involving today's material:
o A gquestion about convexity.

o A question about implementing gradient descent to find optimal parameters for a
model that is not linear in its parameters.

e On Monday, we'll start talking about probability.
o Homework 5 will have a probability problem taken from a past DSC 10 exam, to
help you refresh.
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