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The Midterm Exam is tomorrow!

Some time for review in Discussion today, and Owen's OH 4-5p in HDSI 155.
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Recap: Gradient descent.

Convexity.

More examples.

Huber loss.

Gradient descent with multiple variables.
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Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!
If the direct link doesn't work, click the "  Lecture Questions"

link in the top right corner of dsc40a.com.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/


Overview: Gradient descent
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Goal: Given a differentiable function , find the input  that minimizes .

What does  mean?
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To minimize a differentiable function :

Pick a positive number, . This number is called the learning rate, or step size.

Pick an initial guess, .

Then, repeatedly update your guess using the update rule:

Repeat this process until convergence – that is, when  doesn't change much.

This procedure is called gradient descent.
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Gradient descent is a numerical method for finding the input to a function  that
minimizes the function.

Why is it called gradient descent?

The gradient is the extension of the derivative to functions of multiple variables.

We will see how to use gradient descent with multivariate functions next class.

What is a numerical method?

A numerical method is a technique for approximating the solution to a
mathematical problem, often by using the computer.

Gradient descent is widely used in machine learning, to train models from linear
regression to neural networks and transformers (includng ChatGPT)!
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See dsc40a.com/resources/lectures/lec10 for animated examples of

gradient descent, and see this notebook for the associated code!
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https://dsc40a.com/resources/lectures/lec10
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec11/lec11-code.ipynb


While gradient descent can minimize
other kinds of differentiable functions, its

most common use case is in minimizing
empirical risk.

For example, consider:

The constant model, .

Squared loss.

The dataset .

The initial guess  and the

learning rate .

Exercise: Find  and . 10
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Now, we'll explore the following ideas:

When is gradient descent guaranteed to converge to a global minimum?

What kinds of functions work well with gradient descent?

How do I choose a step size?

How do I use gradient descent to minimize functions of multiple variables, e.g.:
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When is gradient descent guaranteed to work?
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A convex function A non-convex function 
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A convex function 

A function  is convex if, for every  in the domain of , the line segment between:

does not go below the plot of .

A non-convex function 15



A function  is convex if, for every
 in the domain of , and for every

:

This is a formal way of restating the definition
from the previous slide.
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Answer at q.dsc40a.com

Which of these functions are not convex?

A. .

B. .

C. .

D. .

E. More than one of the above are non-convex.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform


If  is a function of a single variable and is twice differentiable, then  is convex
if and only if:

Example:  is convex.
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Convex functions are (relatively) easy to minimize with gradient descent.

Theorem: If  is convex and differentiable, then gradient descent converges to a

global minimum of , as long as the step size is small enough.

Why?

Gradient descent converges when the derivative is 0.

For convex functions, the derivative is 0 only at one place – the global minimum.

In other words, if  is convex, gradient descent won't get "stuck" and terminate in

places that aren't global minimums (local minimums, saddle points, etc.).
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We say a function is nonconvex if it does not meet the criteria for convexity.

Nonconvex functions are (relatively) difficult to minimize.

Gradient descent might still work, but it's not guaranteed to find a global minimum.

We saw this at the start of the lecture, when trying to minimize

.
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In practice, choosing a step size involves a lot of trial-and-error.

In this class, we've only touched on "constant" step sizes, i.e. where  is a constant.

Remember:  is the "step size", but the amount that our guess for  changes is

, not just .

In future courses, you'll learn about "decaying" step sizes, where the value of 
decreases as the number of iterations increases.

Intuition: take much bigger steps at the start, and smaller steps as you progress,
as you're likely getting closer to the minimum.
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More examples
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First, we learned about squared loss,
.

Then, we learned about absolute loss,
.

Let's look at a new loss function, Huber loss:
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Squared loss in blue, Huber loss in green.

Note that both loss functions are convex!
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For the constant model, :

So, the derivative of empirical risk is:

It's impossible to set  and solve by hand: we need gradient descent!
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Let's try this out in practice! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-su-ii&subPath=lectures/lec11/lec11-code.ipynb


Consider the function:

It has two partial derivatives:  and .
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If  is a function of multiple variables, then its gradient, , is a vector
containing its partial derivatives.

Example:

Example:
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Example:

The minimizer of  is a vector, .

We start with an initial guess, , and step size , and update our guesses using:
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Given an initial guess of  and a step size of , perform two iterations of

gradient descent. What is ?
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To find optimal model parameters for the model  and squared
loss, we minimized empirical risk:

This is a function of multiple variables, and is differentiable, so it has a gradient!

Key idea: To find  and , we could use gradient descent!
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Let's watch  this animation that Jack made.
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https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E
https://youtu.be/oMk6sP7hrbk?si=tdoAYfnqTwon5e4E


The Midterm Exam is tomorrow, in this room!

In Homework 5, you'll see a few questions involving today's material:

A question about convexity.

A question about implementing gradient descent to find optimal parameters for a
model that is not linear in its parameters.

On Monday, we'll start talking about probability.
Homework 5 will have a probability problem taken from a past DSC 10 exam, to

help you refresh.
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