Lecture 17

Naïve Bayes

DSC 40A, Summer 2024

Announcements

- Homework 8, the final homework, is due tomorrow.
 - It's short: only two questions.

The Final Exam is on Friday, September 6th!

- The Final Exam is on Friday, September 6th from 11:30AM-2:30PM in WLH 2113.
- 180 minutes, on paper, no calculators or electronics.
 - You are allowed to bring two double-sided index cards (4 inches by 6 inches) of notes that you write by hand (no iPad).
- Content: All lectures (including this week), homeworks (including HW 8), and groupworks.
- Prepare by practicing with old exam problems at practice.dsc40a.com.
 - There are tons of past probability exams, searchable by topic.
 - Check out the advice page for study strategies.
- No formal review session but lots of office hours this week come through!

Agenda

- Classification.
- Classification and conditional independence.
- Naïve Bayes.

Recap: Bayes' Theorem, independence, and conditional independence

 Bayes' Theorem describes how to update the probability of one event, given that another event has occurred.

ed.

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B) \cdot \mathbb{P}(A|B)}{\mathbb{P}(A)}$$

$$\mathsf{t} \text{ if:}$$

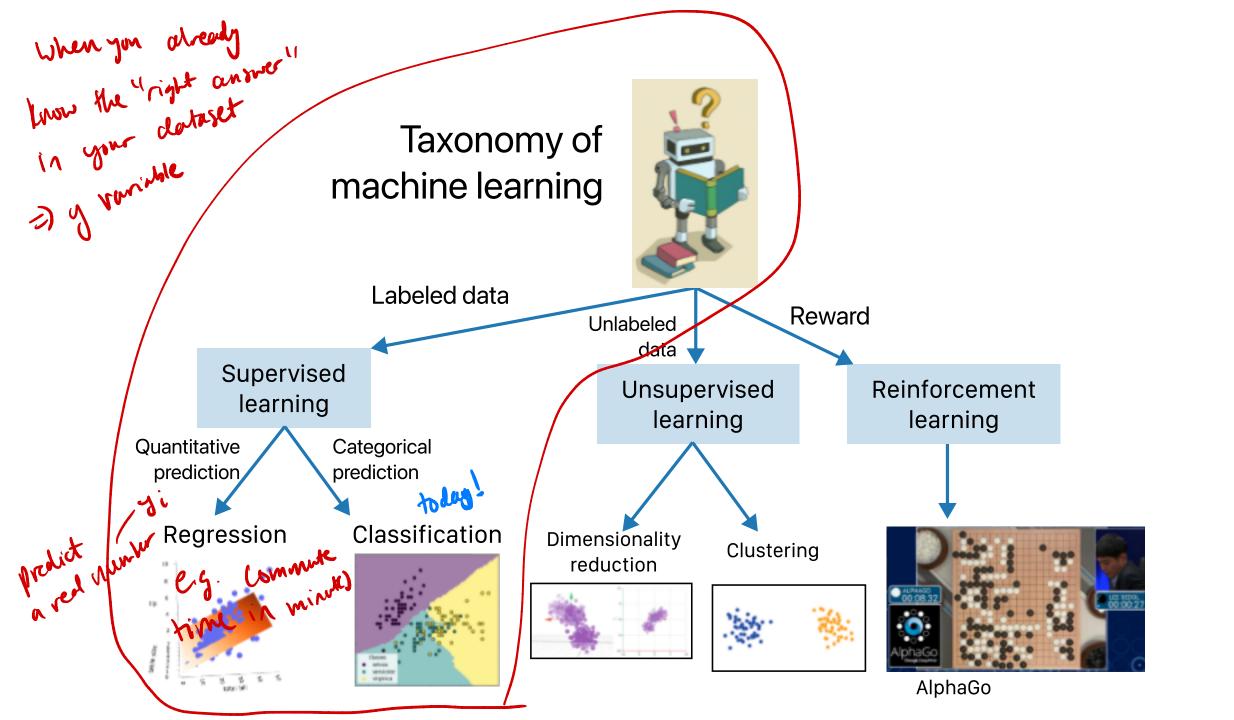
$$\mathbb{P}(A \cap B) - \mathbb{P}(A) \cdot \mathbb{P}(B)$$

• A and B are **independent** if:

$$\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)$$

• A and B are conditionally independent given C if:

 In general, there is no relationship between independence and conditional independence.



Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Classification

Classification problems

- Like with regression, we're interested in making predictions based on data (called training data) for which we know the value of the response variable.
- The difference is that the response variable is now categorical.
- Categories are called **classes**.
- Example classification problems:
 - Deciding whether a patient has kidney disease.
 - Identifying handwritten digits.
 - Determining whether an avocado is ripe.
 - Predicting whether credit card activity is fraudulent.
 - Predicting whether you'll be late to school or not.

X	9	
color	ripeness	
bright green	unripe X	
green-black	ripe 🗸	1
purple-black	ripe 🗸	
green-black	unripe X	1
purple-black	ripe 🗸	
bright green	unripe X	
green-black	ripe 🗸	2
purple-black	ripe 🗸	
green-black	ripe 🗸	3
green-black	unripe X	2
purple-black	ripe 🗸	
minim) data	

You have a green-black avocado, and want to know if it is ripe.

Question: Based on this data, would you predict your avocado is ripe or unripe?

Of the 5 G-B avocados I've seen:

3 are ripe

3 are unripe

3>2 so I'll predict that my new aro caelo

is ripe!

color	ripeness
bright green	unripe X
green-black	ripe 🔽
purple-black	ripe 🗸
green-black	unripe X
purple-black	ripe 🔽
bright green	unripe X
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🔽
green-black	unripe X
purple-black	ripe 🗸

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

Strategy: Calculate two probabilities:

$$\mathbb{P}(\text{ripe}|\text{green-black}) = \frac{3}{5} \text{ total #}$$

$$\mathbb{P}(\text{unripe}|\text{green-black}) = \frac{3}{5} \text{ avocados}$$

Then, predict the class with a **larger** probability.

Estimating probabilities

- We would like to determine $\mathbb{P}(\text{ripe}|\text{green-black})$ and $\mathbb{P}(\text{unripe}|\text{green-black})$ for all avocados in the universe.
- All we have is a single dataset, which is a sample of all avocados in the universe.
- We can estimate these probabilities by using sample proportions.

$$\mathbb{P}(\text{ripe}|\text{green-black}) \approx \frac{\# \text{ ripe green-black avocados in sample}}{\# \text{ green-black avocados in sample}}$$

• Per the **law of large numbers** in DSC 10, larger samples lead to more reliable estimates of population parameters.

ripeness
unripe X
ripe 🔽
ripe 🔽
unripe X
ripe 🔽
unripe X
ripe 🗸
ripe 🔽
ripe 🔽
unripe X
ripe 🔽

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

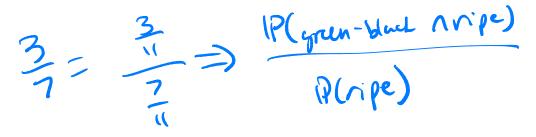
$$\mathbb{P}(\text{ripe}|\text{green-black}) = \frac{3}{5}$$

$$\mathbb{P}(\text{unripe}|\text{green-black}) = \frac{2}{5}$$

Bayes' Theorem for Classification

ullet Suppose that A is the event that an avocado has certain features, and B is the event that an avocado belongs to a certain class. Then, by Bayes' Theorem:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B) \cdot \mathbb{P}(A|B)}{\mathbb{P}(A)}$$


$$\mathbb{P}(A) = \frac{\mathbb{P}(A)}{\mathbb{P}(A)}$$

$$\mathbb{P}(\text{ripe | green-black}) = \frac{\mathbb{P}(\text{class}) \cdot \mathbb{P}(\text{features}|\text{class})}{\mathbb{P}(\text{features})}$$

More generally:

- \circ Usually, it's not possible to estimate $\mathbb{P}(\operatorname{class}|\operatorname{features})$ directly.
- \circ Instead, we often have to estimate $\mathbb{P}(\text{class})$, $\mathbb{P}(\text{features}|\text{class})$, and $\mathbb{P}(\text{features})$ separately.

color	ripeness
bright green	unripe X
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	unripe X
purple-black	ripe 🗸
bright green	unripe X
green-black	ripe 🗸
purple-black	ripe 🗸
green-black	ripe 🗸
green-black	unripe X
purple-black	ripe 🗸

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{class}) \cdot P(\text{features}|\text{class})}{P(\text{features})}$$

$$P(\text{ripel green-black}) = \frac{P(\text{ripe}) \cdot P(\text{green-black})}{P(\text{green-black})}$$

$$= \frac{7}{11} \cdot \frac{3}{7} = \frac{3}{5} \quad \text{Game as}$$

color	ripeness
bright green	unripe X
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	unripe X
purple-black	ripe 🗸
bright green	unripe X
green-black	ripe 🗸
purple-black	ripe 🗸
green-black	ripe 🗸
green-black	unripe X
purple-black	ripe 🗸

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

$$P(\text{class}|\text{features}) = \frac{P(\text{class}) \cdot P(\text{features}|\text{class})}{P(\text{features})}$$

$$P(\text{unripe}|\text{green-black})$$

$$= P(\text{unripe}) \cdot P(\text{g-b}|\text{unripe}) = \frac{M}{3} \cdot \frac{2}{3} = \frac{2}{3}$$

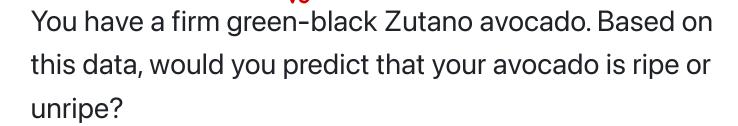
$$P(\text{g-b})$$

color	ripeness
bright green	unripe X
green-black	ripe 🔽
purple-black	ripe 🗸
green-black	unripe X
purple-black	ripe 🗸
bright green	unripe X
green-black	ripe 🗸
purple-black	ripe 🔽
green-black	ripe 🗸
green-black	unripe X
purple-black	ripe 🗸

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict your avocado is ripe or unripe?

ripe or unripe?

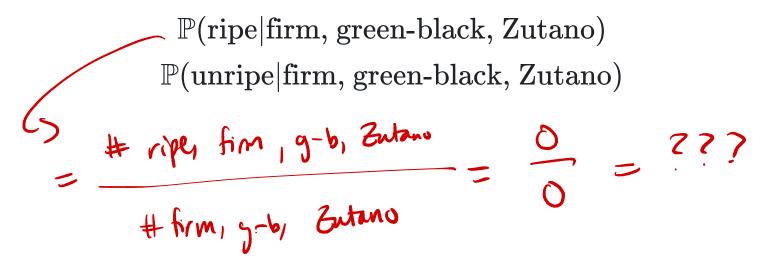
$$\mathbb{P}(\text{class}|\text{features}) = \frac{\mathbb{P}(\text{class}) \cdot \mathbb{P}(\text{features}|\text{class})}{\mathbb{P}(\text{features})}$$


Shortcut: Both probabilities have the same denominator, so the larger probability is the one with the larger numerator.

numerator.

$$P(\text{ripe}|\text{green-black}) = d P(\text{ripe}) \cdot P(\text{g-b}|\text{ripe})$$
 $= \frac{3}{4} + \frac{1}{4} + \frac{1}{4$

Classification and conditional independence


color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

color	softness	variety	ripeness
b right green	firm	Zutano	unrip e
g <u>reen-black</u>	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-b <u>lack</u>	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
gre en-black	soft	Zutano	ripe
gr een black	firm	Hass	unripe
pu rple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate $\mathbb{P}(\text{ripe}|\text{features})$ and $\mathbb{P}(\text{unripe}|\text{features})$ and choose the class with the larger probability.

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate $\mathbb{P}(\text{ripe}|\text{features})$ and $\mathbb{P}(\text{unripe}|\text{features})$ and choose the class with the **larger** probability.

Issue: We have not seem a firm green-black Zutano avocado before, which means that the following probabilities are undefined:

 $\mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano})$ $\mathbb{P}(\text{unripe}|\text{firm, green-black, Zutano})$

A simplifying assumption

- We want to find $\mathbb{P}(\text{ripe}|\text{firm}, \text{green-black}, \text{Zutano})$, but there are no firm green-black Zutano avocados in our dataset.
- Bayes' Theorem tells us this probability is equal to:

$$\begin{split} \mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano}) &= \frac{\mathbb{P}(\text{ripe}) \cdot \mathbb{P}(\text{firm, green-black, Zutano}|\text{ripe})}{\mathbb{P}(\text{firm, green-black, Zutano})} \\ \mathbb{P}(\text{ class | features}) \end{split}$$

Key idea: Assume that features are conditionally independent given a class (e.g. ripe).

 $\mathbb{P}(\text{firm, green-black, Zutano}|\text{ripe}) = \mathbb{P}(\text{firm}|\text{ripe}) \cdot \mathbb{P}(\text{green-black}|\text{ripe}) \cdot \mathbb{P}(\text{Zutano}|\text{ripe})$

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
gr <mark>een-black</mark>	soft	Zutano	ripe
green-black	firm	Hass	unripe
pu <mark>rple-black</mark>	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

conditionally independent
given class

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

$$\mathbb{P}(\text{unripe}|\text{firm, green-black, Zutano}) = \frac{\mathbb{P}(\text{unripe}) \cdot \mathbb{P}(\text{firm, green-black, Zutano}|\text{unripe})}{\mathbb{P}(\text{firm, green-black, Zutano})}$$

$$\alpha$$
 β (unripe) β (fim | unripe) β (α -b) unripe) β (α -

Conclusion

- The numerator of $\mathbb{P}(\text{ripe}|\text{firm, green-black, Zutano})$ is $\frac{6}{539}$.
- The numerator of $\mathbb{P}(\text{unripe}|\text{firm, green-black, Zutano})$ is $\frac{6}{88}$.
- Both probabilities have the same denominator, $\mathbb{P}(\text{firm, green-black, Zutano})$.
- Since we're just interested in seeing which one is larger, we can ignore the denominator and compare numerators.
- Since the numerator for unripe is larger than the numerator for ripe, we predict that our avocado is unripe X.

$$\frac{6}{8} > \frac{6}{10}$$

Naïve Bayes

The Naïve Bayes classifier

- We want to predict a class, given certain features.
- Using Bayes' Theorem, we write:

predict a class, given certain features.

s' Theorem, we write:

$$\mathbb{P}(\text{class}|\text{features}) = \frac{\mathbb{P}(\text{class}) \cdot \mathbb{P}(\text{features}|\text{class})}{\mathbb{P}(\text{features})} \mathcal{A} \quad \mathbb{P}(\text{class}) \quad \mathbb{P}(\text{class})$$

ass. we compute the numerator using the paive assumption of

- For each class, we compute the numerator using the haïve assumption of conditional independence of features given the class.
- We estimate each term in the numerator based on the training data.
- We predict the class with the largest numerator.
 - Works if we have multiple classes, too!

Dictionary

Definitions from Oxford Languages · Learn more

adjective

(of a person or action) showing a lack of experience, wisdom, or judgment. "the rather naive young man had been totally misled"

(of a person) natural and <u>unaffected</u>; innocent.
 "Andy had a sweet, naive look when he smiled"

• of or denoting art produced in a straightforward style that deliberately <u>rejects</u> sophisticated artistic techniques and has a bold <u>directness</u> <u>resembling</u> a child's work, typically in bright colors with little or no perspective.

Example: Avocados, again

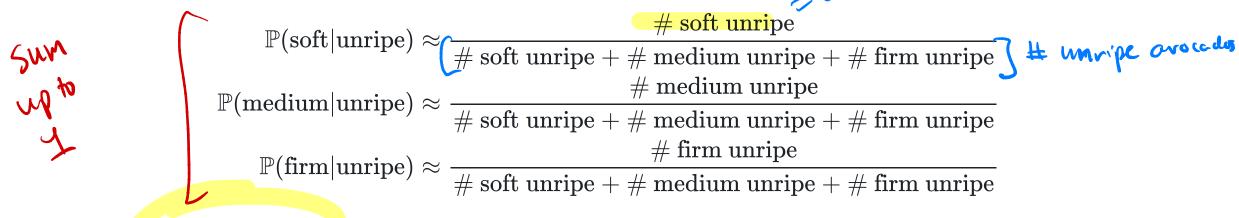
color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Based on this data, would you predict that your avocado is ripe or unripe?

P(unripe | soft, g-b, Hass) &

P(unripe) P(soft | unripe) P(g-b lunripe) P(Hass | unripe)

=
$$\frac{U}{U}$$
. $\frac{Q}{Y}$. $\frac{Q}{Y}$. $\frac{Q}{Y}$


Uh oh!

is also 0.

- There are no soft unripe avocados in the data set.
- The estimate $\mathbb{P}(\mathrm{soft}|\mathrm{unripe}) pprox rac{\# \, \mathrm{soft} \, \mathrm{unripe} \, \mathrm{avocados}}{\# \, \mathrm{unripe} \, \mathrm{avocados}}$ is 0.
- The estimated numerator: $\mathbb{P}(\text{unripe}) \cdot \mathbb{P}(\text{soft, green-black, Hass}|\text{unripe}) = \mathbb{P}(\text{unripe}) \cdot \mathbb{P}(\text{soft}|\text{unripe}) \cdot \mathbb{P}(\text{green-black}|\text{unripe}) \cdot \mathbb{P}(\text{Hass}|\text{unripe})$
- But just because there isn't a soft unripe avocado in the data set, doesn't mean that it's impossible for one to exist!
- Idea: Adjust the numerators and denominators of our estimate so that they're never 0.

Smoothing

Without smoothing:

• With smoothing:

```
\mathbb{P}(\text{soft | unripe}) \approx \frac{\# \text{ soft unripe} + 1}{\# \text{ soft unripe}} + \# \text{ firm unripe} + 1}
\text{edium | unripe}) \approx \frac{\# \text{ soft unripe} + 1}{\# \text{ medium unripe}} + \# \text{ firm unripe} + 1}
\mathbb{P}(	ext{medium unripe}) pprox rac{\# 	ext{ medium unripe} + 1}{\# 	ext{ soft unripe} + 1 + \# 	ext{ medium unripe} + 1 + \# 	ext{ firm unripe} + 1}
           \mathbb{P}(\text{firm}|\text{unripe}) \approx \frac{\# \text{ firm unripe} + 1}{\# \text{ soft unripe} + 1 + \# \text{ medium unripe} + 1 + \# \text{ firm unripe} + 1}
```

When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

Example: Avocados, with smoothing only and pub.

color	softness	variety	ripeness
bright green	firm	Zutano	unripe
green-black	medium	Hass	ripe
purple-black	firm	Hass	ripe
green-black	medium	Hass	unripe
purple-black	soft	Hass	ripe
bright green	firm	Zutano	unripe
green-black	soft	Zutano	ripe
purple-black	soft	Hass	ripe
green-black	soft	Zutano	ripe
green-black	firm	Hass	unripe
purple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Example: Avocados, with smoothing

			• -	•
	color	softness	variety	ripeness
	bright green	firm	Zutano	unripe
	green-black	medium	Hass	ripe
	purple -blac k	firm	Hass	ripe
	green-black	medium	Hass	unripe
	purple-black	soft	Hass	ripe
	bright green	firm	Zutano	unripe
	green-black	soft	Zutano	ripe
	purple-black	soft	Hass	ripe
	green-black	soft	Zutano	ripe
	green-black	firm	Hass	unripe
	ourple-black	medium	Hass	ripe

You have a soft green-black Hass avocado. Based on this data, would you predict that your avocado is ripe or unripe?

unripe numerator: 539 predict a soft, green-black, Hass avocado is

Summary

Summary

- In classification, our goal is to predict a discrete category, called a class, given some features.
- The Naïve Bayes classifier uses Bayes' Theorem:

$$\mathbb{P}(ext{class}| ext{features}) = rac{\mathbb{P}(ext{class}) \cdot \mathbb{P}(ext{features}| ext{class})}{\mathbb{P}(ext{features})}$$

- And works by estimating the numerator of $\mathbb{P}(\text{class}|\text{features})$ for all possible classes.
- It also uses a simplifying assumption, that features are conditionally independent given a class:

$$\mathbb{P}(\text{feature}_1|\text{class}) = \mathbb{P}(\text{feature}_1|\text{class}) \cdot \mathbb{P}(\text{feature}_2|\text{class}) \cdot \dots$$