Mock Exam - Midterm 1

1. (6 points) Define the extreme mean $(E M)$ of a dataset to be the average of its largest and smallest values. Let

$$
f(x)=-3 x+4
$$

Show that for any dataset $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
E M\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)=f\left(E M\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

Solution: This linear transformation reverses the order of the data because if $a<b$, then $-3 a>-3 b$ and so adding four to both sides gives $f(a)>f(b)$. Since $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, this means that the smallest of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$ is $f\left(x_{n}\right)$ and the largest is $f\left(x_{1}\right)$. Therefore,

$$
\begin{aligned}
E M\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right) & =\frac{f\left(x_{n}\right)+f\left(x_{1}\right)}{2} \\
& =\frac{-3 x_{n}+4-3 x_{1}+4}{2} \\
& =\frac{-3 x_{n}-3 x_{1}}{2}+4 \\
& =-3\left(\frac{x_{1}+x_{n}}{2}\right)+4 \\
& =-3 E M\left(x_{1}, x_{2}, \ldots, x_{n}\right)+4 \\
& =f\left(E M\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

2. (10 points) Consider a new loss function,

$$
L(h, y)=e^{(h-y)^{2}}
$$

Given a dataset $y_{1}, y_{2}, \ldots, y_{n}$, let $R(h)$ represent the empirical risk for the dataset using this loss function.
a) (4 points) For the dataset $\{1,3,4\}$, calculate $R(2)$. Simplify your answer as much as possible without a calculator.

Solution: We need to calculate the loss for each data point then average the losses. That is, we need to calculate

$$
R(2)=\frac{1}{3} \sum_{i=1}^{3} e^{\left(2-y_{i}\right)^{2}}
$$

The table below records the necessary information:

y_{i}	1	3	4
$2-y_{i}$	1	-1	-2
$\left(2-y_{i}\right)^{2}$	1	1	4
$e^{\left(2-y_{i}\right)^{2}}$	e	e	e^{4}

This means

$$
\begin{aligned}
R(2) & =\frac{1}{3} \sum_{i=1}^{3} e^{\left(2-y_{i}\right)^{2}} \\
& =\frac{1}{3}\left(e+e+e^{4}\right) \\
& =\frac{1}{3}\left(2 e+e^{4}\right)
\end{aligned}
$$

b) (6 points) For the same dataset $\{1,3,4\}$, perform one iteration of gradient descent on $R(h)$, starting at an initial prediction of $h_{0}=2$ with a step size of $\alpha=\frac{1}{2}$. Show your work and simplify your answer.

Solution: First, we calculate the derivative of $R(h)$. Using the chain rule, we have

$$
\begin{aligned}
R(h) & =\frac{1}{n} \sum_{i=1}^{n} e^{\left(h-y_{i}\right)^{2}} \\
R^{\prime}(h) & =\frac{1}{n} \sum_{i=1}^{n} e^{\left(h-y_{i}\right)^{2}} * 2\left(h-y_{i}\right)
\end{aligned}
$$

To apply the gradient descent update rule, we next have to calculate $R^{\prime}\left(h_{0}\right)$ or $R^{\prime}(2)$. Plugging in $h=2$ to the derivative we calculated above gives

$$
R^{\prime}(2)=\frac{1}{n} \sum_{i=1}^{n} e^{\left(2-y_{i}\right)^{2}} * 2\left(2-y_{i}\right)
$$

The table below records the necessary information (note that we've done most of the work already).

y_{i}	1	3	4
$2-y_{i}$	1	-1	-2
$\left(2-y_{i}\right)^{2}$	1	1	4
$e^{\left(2-y_{i}\right)^{2}}$	e	e	e^{4}
$e^{\left(2-y_{i}\right)^{2}} * 2\left(2-y_{i}\right)$	$2 e$	$-2 e$	$-4 e^{4}$

Therefore

$$
\begin{aligned}
R^{\prime}(2) & =\frac{1}{3} \sum_{i=1}^{3} e^{\left(2-y_{i}\right)^{2} * 2\left(2-y_{i}\right)} \\
& =\frac{1}{3}\left(2 e-2 e-4 e^{4}\right) \\
& =\frac{-4 e^{4}}{3} .
\end{aligned}
$$

Applying the gradient descent update rule gives

$$
\begin{aligned}
h_{1} & =h_{0}-\alpha * R^{\prime}\left(h_{0}\right) \\
& =2-\frac{1}{2} * \frac{-4 e^{4}}{3} \\
& =2+\frac{2 e^{4}}{3}
\end{aligned}
$$

3. (8 points) Suppose you have a dataset

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{8}, y_{8}\right)\right\}
$$

with $n=8$ ordered pairs such that the variance of $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ is 50 . Let m be the slope of the regression line fit to this data.

Suppose now we fit a regression line to the dataset

$$
\left\{\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right), \ldots,\left(x_{8}, y_{8}\right)\right\}
$$

where the first two y-values have been swapped. Let m^{\prime} be the slope of this new regression line.
If $x_{1}=3, y_{1}=7, x_{2}=8$, and $y_{2}=2$, what is the difference between the new slope and the old slope? That is, what is $m^{\prime}-m$? The answer you get should be a number with no variables.

Hint: There are many equivalent formulas for the slope of the regression line. We recommend using the version of the formula without \bar{y}.

Solution: Using the formula for the slope of the regression line, we have

$$
\begin{aligned}
m & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{n * \operatorname{Var}(x)} \\
& =\frac{(3-\bar{x}) * 7+(8-\bar{x}) * 2+\sum_{i=3}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{8 * 50} .
\end{aligned}
$$

Note that by interchanging the first two y-values, the terms in the sum from $i=3$ to n, the number of data points n, and the variance of the x-values are all unchanged. So the slope becomes

$$
m^{\prime}=\frac{(3-\bar{x}) * 2+(8-\bar{x}) * 7+\sum_{i=3}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{8 * 50}
$$

and the difference between these slopes is given by

$$
\begin{aligned}
m^{\prime}-m & =\frac{(3-\bar{x}) * 2+(8-\bar{x}) * 7-((3-\bar{x}) * 7+(8-\bar{x}) * 2)}{8 * 50} \\
& =\frac{(3-\bar{x}) * 2+(8-\bar{x}) * 7-(3-\bar{x}) * 7-(8-\bar{x}) * 2}{8 * 50} \\
& =\frac{(3-\bar{x}) *(-5)+(8-\bar{x}) * 5}{8 * 50} \\
& =\frac{-15+5 \bar{x}+40-5 \bar{x}}{8 * 50} \\
& =\frac{25}{8 * 50} \\
& =\frac{1}{16} .
\end{aligned}
$$

4. (9 points) Consider the dataset shown below.

$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	y
0	6	8	-5
3	4	5	7
5	-1	-3	4
0	2	1	2

a) (5 points) We want to use multiple regression to fit a prediction rule of the form

$$
H\left(x^{(1)}, x^{(2)}, x^{(3)}\right)=w_{0}+w_{1} x^{(1)} x^{(3)}+w_{2}\left(x^{(2)}-x^{(3)}\right)^{2} .
$$

Write down the design matrix X and observation vector \vec{y} for this scenario. No justification needed.
Solution: The design matrix X and observation vector \vec{y} are given by

$$
X=\left[\begin{array}{ccc}
1 & 0 & 4 \\
1 & 15 & 1 \\
1 & -15 & 4 \\
1 & 0 & 1
\end{array}\right], y=\left[\begin{array}{c}
-5 \\
7 \\
4 \\
2
\end{array}\right]
$$

b) (4 points) For the X and \vec{y} that you have written down, let \vec{w} be the optimal parameter vector, which comes from solving the normal equations $X^{T} X \vec{w}=X^{T} \vec{y}$. Let $\vec{e}=\vec{y}-X \vec{w}$ be the error vector, and let e_{i} be the i th component of this error vector. Show that

$$
4 e_{1}+e_{2}+4 e_{3}+e_{4}=0
$$

Solution: We can rewrite the normal equations in terms of the error vector to get

$$
\begin{aligned}
X^{T} X \vec{w} & =X^{T} \vec{y} \\
\overrightarrow{0} & =X^{T} \vec{y}-X^{T} X \vec{w} \\
\overrightarrow{0} & =X^{T}(\vec{y}-X \vec{w}) \\
\overrightarrow{0} & =X^{T} \vec{e}
\end{aligned}
$$

In particular, since one row of X^{T} is $\left[\begin{array}{llll}4 & 1 & 4 & 1\end{array}\right]$, when we multiply \vec{e} by this row, the result is zero. This says that $4 e_{1}+e_{2}+4 e_{3}+e_{4}=0$, as desired.

